【題目】已知關(guān)于x的一元二次方程x2+(m+3)x+m+1=0.
(1)求證:無論m取何值,原方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)若x1,x2是原方程的兩根,且|x1-x2|=2,求m的值.
【答案】(1)證明見解析;(2)m1=1,m2=-3.
【解析】
試題(1)根據(jù)關(guān)于x的一元二次方程x2+(m+3)x+m+1=0的根的判別式△=b2﹣4ac的符號來判定該方程的根的情況;
(2)根據(jù)根與系數(shù)的關(guān)系求得x1+x2=﹣(m+3),x1x2=m+1;然后由已知條件“|x1﹣x2|=2”可以求得(x1﹣x2)2=(x1+x2)2﹣4x1x2=8,從而列出關(guān)于m的方程,通過解該方程即可求得m的值;最后將m值代入原方程并解方程.
試題解析: (1)∵△=(m+3)2﹣4(m+1)=(m+1)2+4,
∵無論m取何值,(m+1)2+4恒大于0,
∴原方程總有兩個(gè)不相等的實(shí)數(shù)根.
(2)∵x1,x2是原方程的兩根,
∴x1+x2=﹣(m+3),x1x2=m+1,
∵|x1﹣x2|=2
∴(x1﹣x2)2=(2)2,
∴(x1+x2)2﹣4x1x2=8,
∴[﹣(m+3)]2﹣4(m+1)=8∴m2+2m﹣3=0,
解得:m1=﹣3,m2=1.
當(dāng)m=﹣3時(shí),原方程化為:x2﹣2=0,
解得:x1=,x2=﹣,
當(dāng)m=1時(shí),原方程化為:x2+4x+2=0,
解得:x1=﹣2+,x2=﹣2﹣.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸上,頂點(diǎn)B在第一象限,AB=1.將線段OA繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)60°得到線段OP,連接AP,反比例函數(shù)(k≠0)的圖象經(jīng)過P,B兩點(diǎn),則k的值為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,正方形ABCD是由兩個(gè)長為a、寬為b的長方形和兩個(gè)邊長分別為a、b的正方形拼成的.
(1)利用正方形ABCD面積的不同表示方法,直接寫出、、ab之間的關(guān)系式,這個(gè)關(guān)系式是 ;
(2)若m滿足,請利用(1)中的數(shù)量關(guān)系,求的值;
(3)若將正方形EFGH的邊、分別與圖①中的PG、MG重疊,如圖②所示,已知PF=8,NH=32,求圖中陰影部分的面積(結(jié)果必須是一個(gè)具體數(shù)值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A是函數(shù)y=﹣(x<0)圖象上的一點(diǎn),連結(jié)AO并延長交函數(shù)y=﹣(x>0)的圖象于點(diǎn)B,點(diǎn)C是x軸上一點(diǎn),且AC=AO,則△ABC的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABE與△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,連接AD,AC,BC,BD,若AD=AC=AB,則下列結(jié)論:①AE垂直平分CD,②AC平分∠BAD,③△ABD是等邊三角形,④∠BCD的度數(shù)為150°,其中正確的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AB=6cm,BC=3cm,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng),如果P、Q兩點(diǎn)同時(shí)出發(fā)。
(1)幾秒鐘后,P、Q間的距離等于4cm?
(2)幾秒種后,△BPQ的面積與四邊形CQPA的面積相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題8分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.
(1)求證:△ABC≌△AED;
(2)當(dāng)∠B=140°時(shí),求∠BAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB∶BC=3∶2,∠DAB=60°,E在AB上,且AE∶EB=1∶2,F(xiàn)是BC的中點(diǎn),過D分別作DP⊥AF于P,DQ⊥CE于Q,則DP∶DQ等于
A.3∶4 B.∶ C.∶ D.∶
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com