【題目】如圖所示,ABC中,DAB的中點,DCAC,且∠BCD=30°,求∠CDA的正弦值、余弦值和正切值.

【答案】,;

【解析】

DDE∥AC,交BC于點E,根據(jù)已知條件易證AC=2DE,由兩直線平行內(nèi)錯角相等及垂直定義得到DC⊥DE,在RtCDE中,可得CE=2DE,DC=DE.設(shè)DE=k,則CD=,AC=2k.RtACD中,利用勾股定理求得,再根據(jù)銳角三角函數(shù)定義即可求出∠CDA的正弦值、余弦值和正切值.

DDE∥AC,交BC于點E,

∵AD=BD,

∴CE=EB,

DE為△ABC的中位線,

∴AC=2DE,

∵ DC⊥ AC,DE∥AC,

DCDE,即∠CDE=90°.

又∵ BCD=30°, EC=2DE,DC=DE.

設(shè)DE=k,則CD=,AC=2k.

RtACD中,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知煙花彈爆炸后某個殘片的空中飛行軌跡可以看成為二次函數(shù)y=﹣x2+2x+5 圖象的一部分,其中x為爆炸后經(jīng)過的時間(秒),y為殘片離地面的高度(米),請問在爆炸后1秒到6秒之間,殘片距離地面的高度范圍為( 。

A. 0米到8米 B. 5米到8米 C. 到8米 D. 5米到

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+4x.

(1)寫出二次函數(shù)y=﹣x2+4x圖象的對稱軸;

(2)在給定的平面直角坐標系中,畫出這個函數(shù)的圖象(列表、描點、連線);

(3)根據(jù)圖象,寫出當y0時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCADE中,∠BAC=∠DAE90°,ADAE,ABAC,且B、D、E三點在一條直線上.

1)求證:BDCE

2)求∠BEC的度數(shù).

3)寫出BEAE、CE的數(shù)量關(guān)系是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB=AC,點DBC上一點,以AD為腰作等腰ADE,且AD=AE, BAC=DAE=30°,連接CE,BD=2,SDCE=,則CD的長為 ______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,ABC三個頂點的坐標分別是A11),B (4,2)C(3,4)

1)請畫出ABC關(guān)于y軸對稱的;

2的面積為 ;

3)在軸上求作一點P,使PAB周長最小,請畫出PAB,并直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠一種產(chǎn)品去年的產(chǎn)量是100萬件,計劃明年產(chǎn)量達到121萬件,假設(shè)去年到明年這種產(chǎn)品產(chǎn)量的年增長率相同。

(1)求去年到明年這種產(chǎn)品產(chǎn)量的年增長率;

(2)今年這種產(chǎn)品的產(chǎn)量應達到多少萬件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,∠ABC=90°AB=BC,三角形的頂點在相互平行的三條直線l1,l2,l3上,且l1,l2之間的距離為1l2,l3之間的距離為2,則AC的長是( )

A. B. C. 5 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(m+3)xm+1=0.

(1)求證:無論m取何值,原方程總有兩個不相等的實數(shù)根;

(2)x1,x2是原方程的兩根,且|x1x2|=2,求m的值.

查看答案和解析>>

同步練習冊答案