【題目】已知,△ABC 是等腰直角三角形,BC=AB,A 點(diǎn)在 x 負(fù)半軸上,直角頂點(diǎn) B 在 y 軸上,點(diǎn) C 在 x 軸上方.
(1)如圖1所示,若A的坐標(biāo)是(﹣3,0),點(diǎn) B的坐標(biāo)是(0,1),求點(diǎn) C 的坐標(biāo);
(2)如圖2,過(guò)點(diǎn) C 作 CD⊥y 軸于 D,請(qǐng)直接寫出線段OA,OD,CD之間等量關(guān)系;
(3)如圖3,若 x 軸恰好平分∠BAC,BC與 x 軸交于點(diǎn) E,過(guò)點(diǎn) C作 CF⊥x 軸于 F,問(wèn) CF 與 AE 有怎樣的數(shù)量關(guān)系?并說(shuō)明理由.
【答案】(1)C(﹣1,4);(2)OA=CD+OD;(3)CF= AE.
【解析】
(1)作CH⊥y軸與D,得OA=3,OB=1,根據(jù)等腰三角形的性質(zhì)得BA=BC,∠ABC=90°,再利用等角的余角相等得∠CBH=∠BAO,證明△ABO≌△BCH,即可求出點(diǎn)C坐標(biāo),
(2)證明△ABO≌△BCH,得OB=CD,OA=BD,∴OA=CD+OD,
(3)如圖 3,CF 和 AB 的延長(zhǎng)線相交于點(diǎn) D,證明△ABE≌△CBD, 得AE=CD,再利用對(duì)稱性質(zhì)得CF=DF,即可解題.
解:(1)作 CH⊥y 軸于 D,如圖 1,
∵點(diǎn) A 的坐標(biāo)是(﹣3,0),點(diǎn) B 的坐標(biāo)是(0,1),
∴OA=3,OB=1,
∵△ABC 是等腰直角三角形,
∴BA=BC,∠ABC=90°,
∴∠ABO+∠CBH=90°,
∵∠ABO+∠BAO=90°,
∴∠CBH=∠BAO,
在△ABO和△BC中
∴△ABO≌△BCH,
∴OB=CH=1,OA=BH=3,
∴OH=OB+BH=1+3=4,
∴C(﹣1,4);
(2)OA=CD+OD.理由如下:如圖2,
∵△ABC 是等腰直角三角形,
∴BA=BC,∠ABC=90°,
∴∠ABO+∠CBD=90°,
∵∠ABO+∠BAO=90°,∴∠CBD=∠BAO,
在△ABO 和△BCD 中
∴△ABO≌△BCD,
∴OB=CD,OA=BD,
而 BD=OB+OD=CD+OD,
∴OA=CD+OD;
(3)CF= AE.理由如下:
如圖 3,CF 和 AB 的延長(zhǎng)線相交于點(diǎn) D,
∴∠CBD=90°,
∵CF⊥x,
∴∠BCD+∠D=90°,∠DAF+∠D=90°,
∴∠BCD=∠DAF,
在△ABE 和△CBD中
∴△ABE≌△CBD,
∴AE=CD,
∵x 軸平分∠BAC,CF⊥x 軸,
∴CF=DF,
∴CF= CD= AE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某教研機(jī)構(gòu)為了解在校初中生閱讀數(shù)學(xué)教科書的現(xiàn)狀,隨機(jī)抽取某校部分初中學(xué)生進(jìn)行了調(diào)查.依據(jù)相關(guān)數(shù)據(jù)繪制成如圖所示的不完整的統(tǒng)計(jì)圖表,請(qǐng)根據(jù)圖表中的信息解答下列問(wèn)題:
某校初中生閱讀數(shù)學(xué)教科書情況統(tǒng)計(jì)圖表
類別 | 人數(shù) | 占總?cè)藬?shù)比例 |
重視 | a | 0.3 |
一般 | 57 | 0.38 |
不重視 | b | c |
說(shuō)不清楚 | 9 | 0.06 |
(1)求樣本容量及表格中a,b,c的值,并補(bǔ)全統(tǒng)計(jì)圖.
(2)若該校共有初中生2 300名,請(qǐng)估計(jì)該!安恢匾曢喿x數(shù)學(xué)教科書”的初中生人數(shù).
(3)①根據(jù)上面的統(tǒng)計(jì)結(jié)果,談?wù)勀銓?duì)該校初中生閱讀數(shù)學(xué)教科書的現(xiàn)狀的看法及建議;
②如果要了解全省初中生閱讀數(shù)學(xué)教科書的情況,你認(rèn)為應(yīng)該如何進(jìn)行抽樣?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知線段 AB a .延長(zhǎng)線段 BA 到點(diǎn) C,使 AC=2AB,延長(zhǎng)線段 AB 到點(diǎn) E,使 BE= BC.
(1)用刻度尺按要求補(bǔ)全圖形;
(2)圖中有幾條線段?求出所有線段的長(zhǎng)度和(用含 a 的代數(shù)式表示);
(3)點(diǎn) D 是 CE 的中點(diǎn),若 AD=0.5cm,求 a 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點(diǎn)D,交CA的延長(zhǎng)線于點(diǎn)E,過(guò)點(diǎn)D作DH⊥AC于點(diǎn)H,連接DE交線段OA于點(diǎn)F.
(1)求證:DH是圓O的切線;
(2)若A為EH的中點(diǎn),求 的值;
(3)若EA=EF=1,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=ax+b和反比例函數(shù)y= 在同一平面直角坐標(biāo)系中的圖象如圖所示,則二次函數(shù)y=ax2+bx+c的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了解七年級(jí)男生體質(zhì)健康情況,隨機(jī)抽取若干名男生進(jìn)行測(cè)試,測(cè)試結(jié)果分為優(yōu)秀、良好、合格、不合格四個(gè)等級(jí),統(tǒng)計(jì)整理數(shù)據(jù)并繪制圖1、圖2兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息回答下列問(wèn)題:
(1)本次接收隨機(jī)抽樣調(diào)查的男生人數(shù)為 人,扇形統(tǒng)計(jì)圖中“良好”所對(duì)應(yīng)的圓心角的度數(shù)為 ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖中“優(yōu)秀”的空缺部分;
(3)若該校七年級(jí)共有男生480人,請(qǐng)估計(jì)全年級(jí)男生體質(zhì)健康狀況達(dá)到“良好”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC與∠ACB的平分線相交于O.過(guò)點(diǎn)O作EF∥BC分別交AB、AC于E、F.若∠BOC=130°,∠ABC:∠ACB=3:2,求∠AEF和∠EFC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(-1,0),(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位長(zhǎng)度,再向右平移1個(gè)單位長(zhǎng)度,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,CD.
(1)求點(diǎn)C,D的坐標(biāo)及S四邊形ABDC.
(2)在y軸上是否存在一點(diǎn)Q,連接QA,QB,使S△QAB=S四邊形ABDC?若存在這樣一點(diǎn),求出點(diǎn)Q的坐標(biāo);若不存在,試說(shuō)明理由.
(3)如圖②,點(diǎn)P是線段BD上的一個(gè)動(dòng)點(diǎn),連接PC,PO,當(dāng)點(diǎn)P在BD上移動(dòng)時(shí)(不與B,D重合),給出下列結(jié)論:①的值不變,②的值不變,其中有且只有一個(gè)是正確的,請(qǐng)你找出這個(gè)結(jié)論并求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一個(gè)不定的正方形ABCD,它的兩個(gè)相對(duì)的頂點(diǎn)A,C分別在邊長(zhǎng)為1的正六邊形一組對(duì)邊上,另外兩個(gè)頂點(diǎn)B,D在正六邊形內(nèi)部(包括邊界),則正方形邊長(zhǎng)a的取值范圍是
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com