【題目】如圖,一次函數(shù) yax 2(a0) 的圖象與反比例函數(shù) y(k0) 的圖象交于 A、B兩點,且與x軸、y軸分別交于點C、D.已知 tan∠AOC=,AO=

(1)求這個一次函數(shù)和反比例函數(shù)的解析式;

(2) 若點 F 是點D 關(guān)于 x 軸的對稱點,求△ABF 的面積.

【答案】(1)y=﹣,y=﹣x﹣2;(2)8

【解析】分析:(1)先過點AAEx軸于E,構(gòu)造RtAOE,再根據(jù)tanAOC=,AO=,求得AE=1,OE=3,即可得出A(-3,1),進而運用待定系數(shù)法,求得一次函數(shù)和反比例函數(shù)的解析式;

(2)先點F是點D關(guān)于x軸的對稱點,求得F(0,2),再根據(jù)解方程組求得B(1,-3),最后根據(jù)ABF的面積=△ADF面積+△BDF面積,進行計算即可.

詳解:(1)過點A作AE⊥x軸于E,

∵tan∠AOC=,AO=,

∴Rt△AOE中,AE=1,OE=3,

∵點A在第二象限,

∴A(﹣3,1),

∵反比例函數(shù)y=(k≠0)的圖象過點A,

∴k=﹣3×1=﹣3,

∴反比例函數(shù)的解析式為y=﹣,

∵一次函數(shù)y=ax﹣2(a≠0)的圖象過點A,

∴1=﹣3a﹣2,

解得a=﹣1,

∴一次函數(shù)的解析式為y=﹣x﹣2;

(2)一次函數(shù)的解析式y(tǒng)=﹣x﹣2中,令x=0,則y=﹣2,

∴D(0,﹣2),

∵點F是點D關(guān)于x軸的對稱點,

∴F(0,2),

∴DF=2+2=4,

解方程組,可得,

∴B(1,﹣3),

∵△ADF面積=×DF×CE=6,

△BDF面積=×DF×|xB|=2,

∴△ABF的面積=△ADF面積+△BDF面積=6+2=8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在正方形ABCD,E在邊AD,F在邊BC的延長線上,AE=CF,連接ACEF.

(1)如圖①,求證:EF//AC;

(2)如圖②,EF與邊CD交于點G,連接BG,BE,

①求證:BAE≌△BCG;

②若BE=EG=4,BAE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一張紙片的形狀為直角三角形,其中∠C=90°,AC=12cm,BC=16cm,沿直線AD折疊該紙片,使直角邊AC與斜邊上的AE重合,則CD的長為______cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】永定土樓是世界文化遺產(chǎn)福建土樓的組成部分,是閩西的旅游勝地.永定土樓模型深受游客喜愛.圖中折線(ABCDx軸)反映了某種規(guī)格土樓模型的單價y(元)與購買數(shù)量x(個)之間的函數(shù)關(guān)系.

(1)求當(dāng)10≤x≤20時,yx的函數(shù)關(guān)系式;

(2)已知某旅游團購買該種規(guī)格的土樓模型總金額為2625元,問該旅游團共購買這種土樓模型多少個?(總金額=數(shù)量×單價)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系中兩定點A(﹣1,0)、B(4,0),拋物線y=ax2+bx﹣2(a≠0)過點A,B,頂點為C,點P(m,n)(n<0)為拋物線上一點.

(1)求拋物線的解析式和頂點C的坐標(biāo);

(2)當(dāng)∠APB為鈍角時,求m的取值范圍;

(3)若m>,當(dāng)∠APB為直角時,將該拋物線向左或向右平移t(0<t<個單位,點C、P平移后對應(yīng)的點分別記為C′、P′,是否存在t,使得首位依次連接A、B、P′、C′所構(gòu)成的多邊形的周長最短?若存在,求t的值并說明拋物線平移的方向;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,任意一個正整數(shù)n都可以進行這樣的分解:n=p×qp,q是正整數(shù),且pq,在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解,并規(guī)定:Fn=,例如12可以分解成1×12,2×6或3×4,因為12-16-24-3,所有3×4是最佳分解,所以F12=.

1如果一個正整數(shù)a是另外一個正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù),求證:對任意一個完全平方數(shù)m,總有Fm=1.

2如果一個兩位正整數(shù)t,t=10x+y1xy9,x,y為自然數(shù),交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為18,那么我們稱這個數(shù)t為吉祥數(shù),求所有吉祥數(shù)中Ft的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯砍底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度為_________米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】順次連接一個四邊形的各邊中點,得到了一個矩形,則下列四邊形中滿足條件的是( 。

①平行四邊形;②菱形;③矩形;④對角線互相垂直的四邊形.

A. ①③B. ②③C. ③④D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程 (m-1)x-mx+1=0。

1)證明:不論m為何值時,方程總有實數(shù)根;

2)若m為整數(shù),當(dāng)m為何值時,方程有兩個不相等的整數(shù)根。

查看答案和解析>>

同步練習(xí)冊答案