【題目】已知A-4,2)、Bn,-4)兩點(diǎn)是一次函數(shù)y=kx+b和反比例函數(shù)圖象的兩個交點(diǎn).

1)求一次函數(shù)和反比例函數(shù)的解析式.

2)求的面積.

3)觀察圖象,直接寫出不等式的解集.

【答案】1)一次函數(shù)解析式為:y=-x-2;反比例函數(shù)解析式為:;(26;(3x<-40<x<2

【解析】

1)先把點(diǎn)A的坐標(biāo)代入反比例函數(shù)解析式,即可得到m=-8,再把點(diǎn)B的坐標(biāo)代入反比例函數(shù)解析式,即可求出n=2,然后利用待定系數(shù)法確定一次函數(shù)的解析式;(2)先求出直線y=-x-2x軸交點(diǎn)C的坐標(biāo),然后利用SAOB=SAOC+SBOC進(jìn)行計(jì)算;(3)觀察函數(shù)圖象得到當(dāng)x-40x2時,一次函數(shù)的圖象在反比例函數(shù)圖象上方,據(jù)此可得不等式的解集.

解:

A-42)代入y=,得m=2×-4=-8

所以反比例函數(shù)解析式為y=,

Bn-4)代入y=,得-4n=-8,

解得n=2,

A-42)和B2,-4)代入y=kx+b,得 ,

解得
所以一次函數(shù)的解析式為y=-x-2;

2y=-x-2中,令y=0,則x=-2
即直線y=-x-2x軸交于點(diǎn)C-2,0),
SAOB=SAOC+SBOC=×2×2+×2×4=6;

3)由圖可得,不等式kx+b-0的解集為:x-40x2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABDAEC都是等邊三角形,AB≠AC.下列結(jié)論中,正確的是 .①BECD;②∠BOD60;③△BOD∽△COE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+c中,函數(shù)y與自變量x的部分對應(yīng)值如表:

x

1

0

1

2

3

y

m

5

2

1

2

m的值是_____,當(dāng)y5時,x的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】參照學(xué)習(xí)函數(shù)的過程方法,探究函數(shù)的圖像與性質(zhì),因?yàn)?/span>,即,所以我們對比函數(shù)來探究列表:

-4

-3

-2

-1

1

2

3

4

1

2

4

-4

-2

-1

<>

2

3

5

-3

-2

0

描點(diǎn):在平面直角坐標(biāo)系中以自變量的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值為縱坐標(biāo),描出相應(yīng)的點(diǎn)如圖所示:

1)請把軸左邊各點(diǎn)和右邊各點(diǎn)分別用一條光滑曲線,順次連接起來;

2)觀察圖象并分析表格,回答下列問題:

①當(dāng)時,的增大而______;(“增大”或“減小”)

的圖象是由的圖象向______平移______個單位而得到的;

③圖象關(guān)于點(diǎn)______中心對稱.(填點(diǎn)的坐標(biāo))

3)函數(shù)與直線交于點(diǎn),,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校數(shù)學(xué)興趣小組為測量校園主教學(xué)樓AB的高度,由于教學(xué)樓底部不能直接到達(dá),故興趣小組在平地上選擇一點(diǎn)C,用測角器測得主教學(xué)樓頂端A的仰角為30°,再向主教學(xué)樓的方向前進(jìn)24米,到達(dá)點(diǎn)E處(C,E,B三點(diǎn)在同一直線上),又測得主教學(xué)樓頂端A的仰角為60°,已知測角器CD的高度為1.6米,請計(jì)算主教學(xué)樓AB的高度.(≈1.73,結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A(mm+1),B(m+3,m1)都在反比例函數(shù)的圖象上,如果Mx軸上一點(diǎn),Ny軸上一點(diǎn),以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形,直接寫出點(diǎn)M,N的坐標(biāo):____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,將△ABC繞點(diǎn)C按逆時針方向旋轉(zhuǎn)得到△A'B'C',此時點(diǎn)A'恰好在AB邊上,則點(diǎn)B'與點(diǎn)B之間的距離為( 。

A. 12 B. 6 C. 6 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC的頂點(diǎn)在⊙O上,點(diǎn)P是劣弧上的一點(diǎn)(端點(diǎn)除外),延長BP至點(diǎn)D,使BDAP,連結(jié)CD.

(1)AP過圓心O,如圖①,請你判斷△PDC是什么三角形?并說明理由;

(2)AP不過圓心O,如圖②,△PDC又是什么三角形?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的網(wǎng)格是正方形網(wǎng)格,線段AB繞點(diǎn)A順時針旋轉(zhuǎn)αα180°)后與⊙O相切,則α的值為_____

查看答案和解析>>

同步練習(xí)冊答案