【題目】如圖,AB是⊙O的直徑,弦CD交AB于點(diǎn)P,AP=2,BP=6,∠APC=30°,則CD的長(zhǎng)為( 。

A. B. 2 C. 2 D. 8

【答案】C

【解析】

OHCDH,連結(jié)OC,如圖,根據(jù)垂徑定理由OHCD得到HC=HD,再利用AP=2,BP=6可計(jì)算出半徑OA=4,則OP=OAAP=2,接著在RtOPH中根據(jù)含30°的直角三角形的性質(zhì)計(jì)算出OH=OP=1,然后在RtOHC中利用勾股定理計(jì)算出CH=,所以CD=2CH=2

OHCDH,連結(jié)OC,如圖,

OHCD,

HC=HD

AP=2,BP=6,

AB=8,

OA=4,

OP=OAAP=2,

RtOPH中,∵∠OPH=30°,

∴∠POH=30°,∴OH=OP=1

RtOHC中,∵OC=4,OH=1

CH=

CD=2CH=2

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解一路段車(chē)輛行駛速度的情況,交警統(tǒng)計(jì)了該路段上午7::09:00來(lái)往車(chē)輛的車(chē)速(單位:千米/時(shí)),并繪制成如圖所示的條形統(tǒng)計(jì)圖.這些車(chē)速的眾數(shù)、中位數(shù)分別是( 。

A. 眾數(shù)是80千米時(shí),中位數(shù)是60千米時(shí)

B. 眾數(shù)是70千米時(shí),中位數(shù)是70千米時(shí)

C. 眾數(shù)是60千米時(shí),中位數(shù)是60千米時(shí)

D. 眾數(shù)是70千米時(shí),中位數(shù)是60千米時(shí)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】反比例函數(shù)y=y=在第一象限內(nèi)的圖象如圖所示,點(diǎn)Py=的圖象上,PC⊥x軸,交y=的圖象于點(diǎn)A,PD⊥y軸,交y=的圖象于點(diǎn)B.當(dāng)點(diǎn)Py=的圖象上運(yùn)動(dòng)時(shí),以下結(jié)論:①△ODB△OCA的面積相等;②PAPB始終相等;③四邊形PAOB的面積不會(huì)發(fā)生變化;④當(dāng)點(diǎn)APC的中點(diǎn)時(shí),點(diǎn)B一定是PD的中點(diǎn).其中一定正確的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工藝品廠生產(chǎn)一種汽車(chē)裝飾品,每件生產(chǎn)成本為20元,銷(xiāo)售價(jià)格在30元至80元之間(含30元和80元),銷(xiāo)售過(guò)程中的管理、倉(cāng)儲(chǔ)、運(yùn)輸?shù)雀鞣N費(fèi)用(不含生產(chǎn)成本)總計(jì)50萬(wàn)元,其銷(xiāo)售量y(萬(wàn)個(gè))與銷(xiāo)售價(jià)格(元/個(gè))的函數(shù)關(guān)系如圖所示.

(1)當(dāng)30x60時(shí),求y與x的函數(shù)關(guān)系式;

(2)求出該廠生產(chǎn)銷(xiāo)售這種產(chǎn)品的純利潤(rùn)w(萬(wàn)元)與銷(xiāo)售價(jià)格x(元/個(gè))的函數(shù)關(guān)系式;

(3)銷(xiāo)售價(jià)格應(yīng)定為多少元時(shí),獲得利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知邊長(zhǎng)為4的菱形ABCD中,ACBC,EF分別為AB,AD邊上的動(dòng)點(diǎn),滿足BEAF,連接EFAC于點(diǎn)GCE、CF分別交BD與點(diǎn)M,N,給出下列結(jié)論:①∠AFC=∠AGE;②EFBE+DF;③△ECF面積的最小值為3,④若AF2,則BMMNDN;⑤若AF1,則EF3FG;其中所有正確結(jié)論的序號(hào)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程有實(shí)數(shù)根.

(1)求m的值;

(2)先作的圖象關(guān)于x軸的對(duì)稱(chēng)圖形,然后將所作圖形向左平移3個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,寫(xiě)出變化后圖象的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠A=110°,EF分別是邊ABBC的中點(diǎn),EP⊥CD于點(diǎn)P,則∠FPC=( )

A. 35° B. 45° C. 50° D. 55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(-4,2)、B(n,-4)是一次函數(shù)的圖象與反比例函數(shù)的圖象的兩個(gè)交點(diǎn).

(1)求此反比例函數(shù)和一次函數(shù)的解析式;

(2)求AOB的面積;

(3)根據(jù)圖象寫(xiě)出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,∠ACB90°OC2BO,AC6,點(diǎn)B的坐標(biāo)為(10),拋物線y=﹣x2+bx+c經(jīng)過(guò)AB兩點(diǎn).

1)求點(diǎn)A的坐標(biāo);

2)求拋物線的解析式;

3)點(diǎn)P是直線AB上方拋物線上的一點(diǎn),過(guò)點(diǎn)PPD垂直x軸于點(diǎn)D,交線段AB于點(diǎn)E,使PEDE

①求點(diǎn)P的坐標(biāo);

②在直線PD上是否存在點(diǎn)M,使△ABM為直角三角形?若存在,求出符合條件的所有點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案