【題目】小明家的門(mén)框上裝有一把防盜門(mén)鎖(如圖1).其平面結(jié)構(gòu)圖如圖2所示,鎖身可以看成由兩條等弧AD,弧BC和矩形ABCD組成,弧BC的圓心是倒鎖按鈕點(diǎn)M.已知弧AD的弓形高GH2cm,AD8cmEP11cm.當(dāng)鎖柄PN繞著點(diǎn)N旋轉(zhuǎn)至NQ位置時(shí),門(mén)鎖打開(kāi),此時(shí)直線PQ與弧BC所在的圓相切,且PQDNtanNQP2

1)弧BC所在圓的半徑為_____cm

2)線段AB的長(zhǎng)度約為_____cm.(≈2.236,結(jié)果精確到0.1cm

【答案】5 29.8

【解析】

1)如圖,連接BM,設(shè)HMBCK,延長(zhǎng)PQNM的延長(zhǎng)線于點(diǎn)T,若直線PQ與弧BC所在的圓相切于J,連結(jié)MJ,在RtBMK中利用勾股定理進(jìn)一步求解可;

2)根據(jù)題意可進(jìn)一步得出tanDNEtanNQP2,從而得出NP的長(zhǎng),最后再利用tanTMJtanNPT進(jìn)一步求解,通過(guò)GN+MN+MK求出AB的長(zhǎng)即可.

如圖,連接BM,設(shè)HMBCK,延長(zhǎng)PQNM的延長(zhǎng)線于點(diǎn)T,若直線PQ與弧BC所在的圓相切于J,連結(jié)MJ,

設(shè)BMr,在RtBMK中,則有r242+r22,

解得r5,

BM5,即弧BC所在圓的半徑為5cm

2)∵DNPB,

∴∠DNE=∠P

NPNQ

∴∠P=∠NQP,

∴∠DNE=∠NQP

tanDNEtanNQP2,

NEDG4,

DENG8,

NPNE+EP4+1115,

∵直線PQ與弧BC所在的圓相切于J,

MJPQMJ5,

∴∠TMJ=∠NPT,

tanTMJtanNPT2

,

NT15×230,TJ5×210

MT=,

MNNTMT305,

ABGN+MN+MK8+305+3415≈29.8cm

故答案為:(15,(229.8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)IABC的內(nèi)心,∠AIC=124°,點(diǎn)EAD的延長(zhǎng)線上,則∠CDE的度數(shù)為( 。

A. 56° B. 62° C. 68° D. 78°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為更精準(zhǔn)地關(guān)愛(ài)留守學(xué)生,某學(xué)校將留守學(xué)生的各種情形分成四種類(lèi)型:A.由父母一方照看;B.由爺爺奶奶照看;C.由叔姨等近親照看;D.直接寄宿學(xué)校.某數(shù)學(xué)小組隨機(jī)調(diào)查了一個(gè)班級(jí),發(fā)現(xiàn)該班留守學(xué)生數(shù)量占全班總?cè)藬?shù)的20%,并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計(jì)圖.

1)該班共有   名留守學(xué)生,B類(lèi)型留守學(xué)生所在扇形的圓心角的度數(shù)為   

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)已知該校共有2400名學(xué)生,現(xiàn)學(xué)校打算對(duì)D類(lèi)型的留守學(xué)生進(jìn)行手拉手關(guān)愛(ài)活動(dòng),請(qǐng)你估計(jì)該校將有多少名留守學(xué)生在此關(guān)愛(ài)活動(dòng)中受益?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C是線段AB上一點(diǎn),AC5cm,點(diǎn)P從點(diǎn)A出發(fā)沿AB3cm/s的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā)沿CB1cm/s的速度向點(diǎn)B運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),結(jié)果點(diǎn)P比點(diǎn)Q先到3s

1)求AB的長(zhǎng);

2)設(shè)點(diǎn)P,Q出發(fā)的時(shí)間為ts,求點(diǎn)P沒(méi)有超過(guò)點(diǎn)Q時(shí),t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x28x+16m20m≠0)是關(guān)于x的一元二次方程

1)證明:此方程總有兩個(gè)不相等的實(shí)數(shù)根;

2)若等腰ABC的一邊長(zhǎng)a6,另兩邊長(zhǎng)b、c是該方程的兩個(gè)實(shí)數(shù)根,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015德陽(yáng))大華服裝廠生產(chǎn)一件秋冬季外套需面料1.2米,里料0.8米,已知面料的單價(jià)比里料的單價(jià)的2倍還多10元,一件外套的布料成本為76元.

(1)求面料和里料的單價(jià);

(2)該款外套9月份投放市場(chǎng)的批發(fā)價(jià)為150/件,出現(xiàn)購(gòu)銷(xiāo)兩旺態(tài)勢(shì),10月份進(jìn)入批發(fā)淡季,廠方?jīng)Q定采取打折促銷(xiāo).已知生產(chǎn)一件外套需人工等固定費(fèi)用14元,為確保每件外套的利潤(rùn)不低于30元.

①設(shè)10月份廠方的打折數(shù)為m,求m的最小值;(利潤(rùn)=銷(xiāo)售價(jià)﹣布料成本﹣固定費(fèi)用)

②進(jìn)入11月份以后,銷(xiāo)售情況出現(xiàn)好轉(zhuǎn),廠方?jīng)Q定對(duì)VIP客戶(hù)在10月份最低折扣價(jià)的基礎(chǔ)上實(shí)施更大的優(yōu)惠,對(duì)普通客戶(hù)在10月份最低折扣價(jià)的基礎(chǔ)上實(shí)施價(jià)格上。阎獙(duì)VIP客戶(hù)的降價(jià)率和對(duì)普通客戶(hù)的提價(jià)率相等,結(jié)果一個(gè)VIP客戶(hù)用9120元批發(fā)外套的件數(shù)和一個(gè)普通客戶(hù)用10080元批發(fā)外套的件數(shù)相同,求VIP客戶(hù)享受的降價(jià)率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ABC內(nèi)接于⊙O,連接CO并延長(zhǎng)交AB于點(diǎn)E,交⊙O于點(diǎn)D,滿(mǎn)足∠BEC3ACD

1)如圖1,求證:ABAC;

2)如圖2,連接BD,點(diǎn)F為弧BD上一點(diǎn),連接CF,弧CF=弧BD,過(guò)點(diǎn)AAGCD,垂足為點(diǎn)G,求證:CF+DGCG;

3)如圖3,在(2)的條件下,點(diǎn)HAC上一點(diǎn),分別連接DH,OH,OHDH,過(guò)點(diǎn)CCPAC,交⊙O于點(diǎn)P,OHCP1 ,CF12,連接PF,求PF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△OAP是等腰直角三角形,∠OAP90°,點(diǎn)A在第四象限,點(diǎn)P坐標(biāo)為(80),拋物線yax2+bx+c經(jīng)過(guò)原點(diǎn)OAP兩點(diǎn).

1)求拋物線的函數(shù)關(guān)系式.

2)點(diǎn)By軸正半軸上一點(diǎn),連接AB,過(guò)點(diǎn)BAB的垂線交拋物線于C、D兩點(diǎn),且BCAB,求點(diǎn)B坐標(biāo);

3)在(2)的條件下,點(diǎn)M是線段BC上一點(diǎn),過(guò)點(diǎn)Mx軸的垂線交拋物線于點(diǎn)N,求△CBN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖示,若ABC內(nèi)一點(diǎn)P滿(mǎn)足PAC=PBA=PCB,則點(diǎn)P為ABC的布洛卡點(diǎn).三角形的布洛卡點(diǎn)(Brocard point)是法國(guó)數(shù)學(xué)家和數(shù)學(xué)教育家克洛爾(A.L.Crelle 1780﹣1855)于1816年首次發(fā)現(xiàn),但他的發(fā)現(xiàn)并未被當(dāng)時(shí)的人們所注意,1875年,布洛卡點(diǎn)被一個(gè)數(shù)學(xué)愛(ài)好者法國(guó)軍官布洛卡(Brocard 1845﹣1922)重新發(fā)現(xiàn),并用他的名字命名.問(wèn)題:已知在等腰直角三角形DEF中,EDF=90°,若點(diǎn)Q為DEF的布洛卡點(diǎn),DQ=1,則EQ+FQ=(

A.5 B.4 C.3+ D.2+

查看答案和解析>>

同步練習(xí)冊(cè)答案