【題目】小明家的門(mén)框上裝有一把防盜門(mén)鎖(如圖1).其平面結(jié)構(gòu)圖如圖2所示,鎖身可以看成由兩條等弧AD,弧BC和矩形ABCD組成,弧BC的圓心是倒鎖按鈕點(diǎn)M.已知弧AD的弓形高GH=2cm,AD=8cm,EP=11cm.當(dāng)鎖柄PN繞著點(diǎn)N旋轉(zhuǎn)至NQ位置時(shí),門(mén)鎖打開(kāi),此時(shí)直線PQ與弧BC所在的圓相切,且PQ∥DN,tan∠NQP=2.
(1)弧BC所在圓的半徑為_____cm.
(2)線段AB的長(zhǎng)度約為_____cm.(≈2.236,結(jié)果精確到0.1cm)
【答案】5 29.8
【解析】
(1)如圖,連接BM,設(shè)HM交BC于K,延長(zhǎng)PQ交NM的延長(zhǎng)線于點(diǎn)T,若直線PQ與弧BC所在的圓相切于J,連結(jié)MJ,在Rt△BMK中利用勾股定理進(jìn)一步求解可;
(2)根據(jù)題意可進(jìn)一步得出tan∠DNE=tan∠NQP=2=,從而得出NP的長(zhǎng),最后再利用tan∠TMJ=tan∠NPT進(jìn)一步求解,通過(guò)GN+MN+MK求出AB的長(zhǎng)即可.
如圖,連接BM,設(shè)HM交BC于K,延長(zhǎng)PQ交NM的延長(zhǎng)線于點(diǎn)T,若直線PQ與弧BC所在的圓相切于J,連結(jié)MJ,
設(shè)BM=r,在Rt△BMK中,則有r2=42+(r﹣2)2,
解得r=5,
∴BM=5,即弧BC所在圓的半徑為5cm.
(2)∵DN∥PB,
∴∠DNE=∠P,
∵NP=NQ,
∴∠P=∠NQP,
∴∠DNE=∠NQP,
∴tan∠DNE=tan∠NQP=2=,
∵NE=DG=4,
∴DE=NG=8,
∴NP=NE+EP=4+11=15,
∵直線PQ與弧BC所在的圓相切于J,
∴MJ⊥PQ,MJ=5,
∴∠TMJ=∠NPT,
∴tan∠TMJ=tan∠NPT=2,
∴,
∴NT=15×2=30,TJ=5×2=10,
∴MT=,
∴MN=NT﹣MT=30﹣5,
∴AB=GN+MN+MK=8+30﹣5+3=41﹣5≈29.8cm
故答案為:(1)5,(2)29.8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)I是△ABC的內(nèi)心,∠AIC=124°,點(diǎn)E在AD的延長(zhǎng)線上,則∠CDE的度數(shù)為( 。
A. 56° B. 62° C. 68° D. 78°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為更精準(zhǔn)地關(guān)愛(ài)留守學(xué)生,某學(xué)校將留守學(xué)生的各種情形分成四種類(lèi)型:A.由父母一方照看;B.由爺爺奶奶照看;C.由叔姨等近親照看;D.直接寄宿學(xué)校.某數(shù)學(xué)小組隨機(jī)調(diào)查了一個(gè)班級(jí),發(fā)現(xiàn)該班留守學(xué)生數(shù)量占全班總?cè)藬?shù)的20%,并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計(jì)圖.
(1)該班共有 名留守學(xué)生,B類(lèi)型留守學(xué)生所在扇形的圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)已知該校共有2400名學(xué)生,現(xiàn)學(xué)校打算對(duì)D類(lèi)型的留守學(xué)生進(jìn)行手拉手關(guān)愛(ài)活動(dòng),請(qǐng)你估計(jì)該校將有多少名留守學(xué)生在此關(guān)愛(ài)活動(dòng)中受益?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C是線段AB上一點(diǎn),AC=5cm,點(diǎn)P從點(diǎn)A出發(fā)沿AB以3cm/s的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā)沿CB以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),結(jié)果點(diǎn)P比點(diǎn)Q先到3s.
(1)求AB的長(zhǎng);
(2)設(shè)點(diǎn)P,Q出發(fā)的時(shí)間為ts,求點(diǎn)P沒(méi)有超過(guò)點(diǎn)Q時(shí),t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知x2﹣8x+16﹣m2=0(m≠0)是關(guān)于x的一元二次方程
(1)證明:此方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)若等腰△ABC的一邊長(zhǎng)a=6,另兩邊長(zhǎng)b、c是該方程的兩個(gè)實(shí)數(shù)根,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2015德陽(yáng))大華服裝廠生產(chǎn)一件秋冬季外套需面料1.2米,里料0.8米,已知面料的單價(jià)比里料的單價(jià)的2倍還多10元,一件外套的布料成本為76元.
(1)求面料和里料的單價(jià);
(2)該款外套9月份投放市場(chǎng)的批發(fā)價(jià)為150元/件,出現(xiàn)購(gòu)銷(xiāo)兩旺態(tài)勢(shì),10月份進(jìn)入批發(fā)淡季,廠方?jīng)Q定采取打折促銷(xiāo).已知生產(chǎn)一件外套需人工等固定費(fèi)用14元,為確保每件外套的利潤(rùn)不低于30元.
①設(shè)10月份廠方的打折數(shù)為m,求m的最小值;(利潤(rùn)=銷(xiāo)售價(jià)﹣布料成本﹣固定費(fèi)用)
②進(jìn)入11月份以后,銷(xiāo)售情況出現(xiàn)好轉(zhuǎn),廠方?jīng)Q定對(duì)VIP客戶(hù)在10月份最低折扣價(jià)的基礎(chǔ)上實(shí)施更大的優(yōu)惠,對(duì)普通客戶(hù)在10月份最低折扣價(jià)的基礎(chǔ)上實(shí)施價(jià)格上。阎獙(duì)VIP客戶(hù)的降價(jià)率和對(duì)普通客戶(hù)的提價(jià)率相等,結(jié)果一個(gè)VIP客戶(hù)用9120元批發(fā)外套的件數(shù)和一個(gè)普通客戶(hù)用10080元批發(fā)外套的件數(shù)相同,求VIP客戶(hù)享受的降價(jià)率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC內(nèi)接于⊙O,連接CO并延長(zhǎng)交AB于點(diǎn)E,交⊙O于點(diǎn)D,滿(mǎn)足∠BEC=3∠ACD.
(1)如圖1,求證:AB=AC;
(2)如圖2,連接BD,點(diǎn)F為弧BD上一點(diǎn),連接CF,弧CF=弧BD,過(guò)點(diǎn)A作AG⊥CD,垂足為點(diǎn)G,求證:CF+DG=CG;
(3)如圖3,在(2)的條件下,點(diǎn)H為AC上一點(diǎn),分別連接DH,OH,OH⊥DH,過(guò)點(diǎn)C作CP⊥AC,交⊙O于點(diǎn)P,OH:CP=1: ,CF=12,連接PF,求PF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△OAP是等腰直角三角形,∠OAP=90°,點(diǎn)A在第四象限,點(diǎn)P坐標(biāo)為(8,0),拋物線y=ax2+bx+c經(jīng)過(guò)原點(diǎn)O和A、P兩點(diǎn).
(1)求拋物線的函數(shù)關(guān)系式.
(2)點(diǎn)B是y軸正半軸上一點(diǎn),連接AB,過(guò)點(diǎn)B作AB的垂線交拋物線于C、D兩點(diǎn),且BC=AB,求點(diǎn)B坐標(biāo);
(3)在(2)的條件下,點(diǎn)M是線段BC上一點(diǎn),過(guò)點(diǎn)M作x軸的垂線交拋物線于點(diǎn)N,求△CBN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖示,若△ABC內(nèi)一點(diǎn)P滿(mǎn)足∠PAC=∠PBA=∠PCB,則點(diǎn)P為△ABC的布洛卡點(diǎn).三角形的布洛卡點(diǎn)(Brocard point)是法國(guó)數(shù)學(xué)家和數(shù)學(xué)教育家克洛爾(A.L.Crelle 1780﹣1855)于1816年首次發(fā)現(xiàn),但他的發(fā)現(xiàn)并未被當(dāng)時(shí)的人們所注意,1875年,布洛卡點(diǎn)被一個(gè)數(shù)學(xué)愛(ài)好者法國(guó)軍官布洛卡(Brocard 1845﹣1922)重新發(fā)現(xiàn),并用他的名字命名.問(wèn)題:已知在等腰直角三角形DEF中,∠EDF=90°,若點(diǎn)Q為△DEF的布洛卡點(diǎn),DQ=1,則EQ+FQ=( )
A.5 B.4 C.3+ D.2+
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com