如圖1,已知P為正方形ABCD的對(duì)角線AC上一點(diǎn)(不與A、C重合),PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F.
(1)求證:BP=DP;
(2)如圖2,若四邊形PECF繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn),在旋轉(zhuǎn)過(guò)程中是否總有BP=DP?若是,請(qǐng)給予證明;若不是,請(qǐng)用反例加以說(shuō)明;
(3)試選取正方形ABCD的兩個(gè)頂點(diǎn),分別與四邊形PECF的兩個(gè)頂點(diǎn)連結(jié),使得到的兩條線段在四邊形PECF繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)的過(guò)程中長(zhǎng)度始終相等,并證明你的結(jié)論.
、沤夥ㄒ唬涸凇ABP與△ADP中,利用全等可得BP=DP. 2分 解法二:利用正方形的軸對(duì)稱性,可得BP=DP. 2分 ⑵不是總成立. 3分 當(dāng)四邊形PECF繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn),點(diǎn)P旋轉(zhuǎn)到BC邊上時(shí),DP>DC>BP,此時(shí)BP=DP不成立. 5分 說(shuō)明:未用舉反例的方法說(shuō)理的不得分. ⑶連接BE、DF,則BE與DF始終相等. 6分 在圖1中,可證四邊形PECF為正方形, 7分 在△BEC與△DFC中,可證△BEC≌△DFC. 從而有BE=DF. 8分 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
1 | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
11 | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
3 |
3 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
4 |
3 |
4 |
3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com