【題目】如圖在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),長方形OACB的頂點(diǎn)AB分別在x,y軸上,已知OA3,點(diǎn)Dy軸上一點(diǎn),其坐標(biāo)為(0,1),CD5,點(diǎn)P從點(diǎn)A出發(fā)以每秒1個(gè)單位的速度沿線段ACB的方向運(yùn)動,當(dāng)點(diǎn)P與點(diǎn)B重合時(shí)停止運(yùn)動,運(yùn)動時(shí)間為t

1)求BC兩點(diǎn)坐標(biāo);

2)①求OPD的面積S關(guān)于t的函數(shù)關(guān)系式;

②當(dāng)點(diǎn)D關(guān)于OP的對稱點(diǎn)E落在x軸上時(shí),求點(diǎn)E的坐標(biāo);

3)在(2)②情況下,直線OP上求一點(diǎn)F,使FE+FA最。

【答案】1B05),C3,5);(2)①S=-;②E10);(3AD的長度就是AF+EF的最小值,則點(diǎn)F即為所求

【解析】

1)由四邊形OACB是矩形,得到BCOA3,在RtBCD中,由勾股定理得到BD 4OB5,從而求得點(diǎn)的坐標(biāo);

2)①當(dāng)點(diǎn)PAC上時(shí),OD1BC3,S,當(dāng)點(diǎn)在BC上時(shí),OD1BP5+3t8t,得到S×1×8t)=﹣ t+4

②當(dāng)點(diǎn)D關(guān)于OP的對稱點(diǎn)落在x軸上時(shí),得到點(diǎn)D的對稱點(diǎn)是(1,0),求得E10);

3)由點(diǎn)D、E關(guān)于OP對稱,連接ADOPF,找到點(diǎn)F,從而確定AD的長度就是AF+EF的最小值,在RtAOD中,由勾股定理求得AD ,即AF+EF的最小值=

解:(1)∵四邊形OACB是矩形,

BCOA3

RtBCD中,∵CD5,BC3,

BD 4,

OB5

B0,5),C3,5);

2)①當(dāng)點(diǎn)PAC上時(shí),OD1,BC3,

S

當(dāng)點(diǎn)在BC上時(shí),OD1BP5+3t8t,

S ×1×8t)=﹣ t+4;(t≥0

②當(dāng)點(diǎn)D關(guān)于OP的對稱點(diǎn)落在x軸上時(shí),點(diǎn)D的對稱點(diǎn)是(10),

E1,0);

3)如圖2∵點(diǎn)D、E關(guān)于OP對稱,連接ADOPF,

AD的長度就是AF+EF的最小值,則點(diǎn)F即為所求.

故答案為:(1B0,5),C3,5);(2)①S=-;②E1,0);(3AD的長度就是AF+EF的最小值,則點(diǎn)F即為所求

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,在一塊寬為12m,長為20m的矩形地面上修筑同樣寬的道路,余下的部分種上草坪.要使草坪的面積為180m2,求道路的寬;

(2)現(xiàn)在對該矩形區(qū)域進(jìn)行改造,如圖2,在正中央建一個(gè)與矩形的邊互相平行的正方形觀賞亭,觀賞亭的四邊連接四條與矩形的邊互相平行的且寬度相等的道路,已知道路的寬為正方形邊長的若道路與觀賞亭的面積之和是矩形面積的求道路的寬

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O的直徑AB與弦CD互相垂直,垂足為點(diǎn)E. O的切線BF與弦AD的延長線相交于點(diǎn)F,且AD=3,cosBCD= .

(1)求證:CDBF;

(2)求O的半徑;

(3)求弦CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某城市體育中考項(xiàng)目分為必測項(xiàng)目和選測項(xiàng)目,必測項(xiàng)目為:跳繩、立定跳遠(yuǎn);選測項(xiàng)目為50米、實(shí)心球、踢毽子三項(xiàng)中任選一項(xiàng).

(1)每位考生將有 種選擇方案;

(2)用畫樹狀圖或列表的方法求小穎和小華將選擇同種方案的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形ABCD中,AB5,AEBC邊上的高,AE4,則對角線BD的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①a>0 ②2a+b=0 ③a+b+c>0 ④當(dāng)﹣1<x<3時(shí),y>0,其中正確的個(gè)數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三角形ABC中, D,EF三點(diǎn)分別在AB,ACBC上,過點(diǎn)D的直線與線段EF的交點(diǎn)為點(diǎn)M,已知2∠1-∠2=150°,2∠ 2-∠1=30°.

(1)求證:DMAC;

(2)若DEBC,∠C =50°,求∠3的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表:

①拋物線與x軸的一個(gè)交點(diǎn)為(30);②函數(shù)y=ax2+bx+c的最大值為6③拋物線的對稱軸是直線;④在對稱軸左側(cè),yx增大而增大.從上表可知,以上說法中正確的是____________.(填寫序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某臺風(fēng)中心位于O點(diǎn),臺風(fēng)中心以 的速度向北偏西方向移動,在半徑的范圍內(nèi)將受影響,城市AO點(diǎn)正西方向與O點(diǎn)相距處,試問:

1市是否會受此臺風(fēng)影響,并說明理由;

2)如受影響,則受影響的時(shí)間有多長?

查看答案和解析>>

同步練習(xí)冊答案