【題目】如圖,已知O的直徑AB與弦CD互相垂直,垂足為點E. O的切線BF與弦AD的延長線相交于點F,且AD=3,cosBCD= .

(1)求證:CDBF;

(2)求O的半徑;

(3)求弦CD的長.

【答案】(1)見解析(2)2(3)

【解析】解:(1)BFO的切線 ABBF …………………1分

ABCD

CDBF………………………………………………2分

(2)連結(jié)BD

AB是直徑 ∴∠ADB=90° ………………………………………3分

∵∠BCD=BAD cosBCD=…………………4分

cosBAD=

AD=3 AB=4

∴⊙O的半徑為2 ……………………………………5分

(3)cosDAE= AD=3AE= …………………………6分

ED= ……………………………………………7分

CD=2ED= ………………………………………………………8分

(1)由平行公理可得

(2)連結(jié)BD,利用三角函數(shù)求得通過已知,即可求得O的半徑

(3)利用三角函數(shù)求得AE的長,通過勾股定理求得ED的長,從而求得弦CD的長

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是甲、乙兩人從同一地點出發(fā)后,路程隨時間變化的圖象.

(1)此變化過程中,___________ 是自變量,___________ 是因變量.

(2)甲的速度 ___________ 乙的速度.(填“大于”、“等于”、或“小于”

(3)甲與乙 ___________ 時相遇.

(4)甲比乙先走 ___________ 小時.

(5)9時甲在乙的 ___________ (填“前面”、“后面”、“相同位置”).

(6)路程為150km,甲行駛了___________ 小時,乙行駛了___________ 小時.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣為了落實中央的強基惠民工程計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內(nèi)完成;若乙隊單獨施工則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊先合做15,那么余下的工程由甲隊單獨完成還需5

1)這項工程的規(guī)定時間是多少天?

2)已知甲隊每天的施工費用為6500,乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我省某地區(qū)為了了解2016年初中畢業(yè)生畢業(yè)去向,對部分九年級學(xué)生進行了抽樣調(diào)查,就九年級學(xué)生畢業(yè)后的四種去向:A.讀普通高中;B.讀職業(yè)高中;C.直接進入社會就業(yè);D.其他(如出國等)進行數(shù)據(jù)統(tǒng)計,并繪制了兩幅不完整的統(tǒng)計圖(如圖1,如圖2)

(1)填空:該地區(qū)共調(diào)查了 名九年級學(xué)生;

(2)將兩幅統(tǒng)計圖中不完整的部分補充完整;

(3)若該地區(qū)2016年初中畢業(yè)生共有3500人,請估計該地區(qū)今年初中畢業(yè)生中讀普通高中的學(xué)生人數(shù);

(4)老師想從甲,乙,丙,丁4位同學(xué)中隨機選擇兩位同學(xué)了解他們畢業(yè)后的去向情況,請用畫樹狀圖或列表的方法求選中甲同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,學(xué)校內(nèi)有一塊四邊形的空地ABCD,現(xiàn)計劃在該空地上種植草坪經(jīng)測量,∠A90°,AB3m,BC12mCD13m,DA4m,若每平方米草坪皮需要400元,問需要投入多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)對于算式23+1)(32+1)(34+1)(38+1+1

不用計算器,你能計算出來嗎?

2)你知道它的計算結(jié)果的個位是幾嗎?

3)根據(jù)(1)推測(a+1)(a2+1)(a4+1)(a8+1)(a16+1a1024+1=  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)若,求的值。

2)已知5x+19的立方根是4,2y-3的算術(shù)平方根是3,求3x-y的平方根。

(3)設(shè)ab、c都是實數(shù),且滿足 ,求式子x+2x的算術(shù)平方根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標系中,O是坐標原點,長方形OACB的頂點A,B分別在x,y軸上,已知OA3,點Dy軸上一點,其坐標為(0,1),CD5,點P從點A出發(fā)以每秒1個單位的速度沿線段ACB的方向運動,當點P與點B重合時停止運動,運動時間為t

1)求B,C兩點坐標;

2)①求OPD的面積S關(guān)于t的函數(shù)關(guān)系式;

②當點D關(guān)于OP的對稱點E落在x軸上時,求點E的坐標;

3)在(2)②情況下,直線OP上求一點F,使FE+FA最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車專賣店銷售AB兩種型號的新能源汽車.上周售出1A型車和3B型車,銷售額為96萬元;本周已售出2A型車和1B型車,銷售額為62萬元.

1)求每輛A型車和B型車的售價各為多少萬元?

2)甲公司擬向該店購買A,B兩種型號的新能源汽車共6輛,且A型號車不少于2輛,購車費不少于130萬元,則有哪幾種購車方案?

查看答案和解析>>

同步練習(xí)冊答案