【題目】(1)若,求的值。
(2)已知5x+19的立方根是4,2y-3的算術(shù)平方根是3,求3x-y的平方根。
(3)設(shè)a、b、c都是實(shí)數(shù),且滿足 ,求式子x+2x的算術(shù)平方根.
【答案】(1)3;(2)±5;(3)2
【解析】
(1)根據(jù)非負(fù)數(shù)的性質(zhì)列出方程求出x,y的值,代入所求代數(shù)式計(jì)算即可;
(2)利用算術(shù)平方根、立方根的定義求出x和y的值,進(jìn)而求出3x-y的值,即可求出它的平方根;
(3)根據(jù)非負(fù)數(shù)的性質(zhì)求出a,b,c的值即可得解.
(1)根據(jù)題意得,
解得x=1,y=-2,
∴;
(2)∵5x+19的立方根是4,
∴5x+19=64,
∴x=9,
∵2y-3的算術(shù)平方根是3,
∴2y-3=9,
∴y=6,
∴3x-y=3×9-×6=25
∴3x-y的平方根是±5;
(3)∵,
∴2-a=0,a2+b+c=0,c+8=0,
∴a=2,b=4,c=-8,
∴2x2+4x-8=0
∴x2+2x=4
∴式子x2+2x的算術(shù)平方根為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,BD的垂直平分線分別交AB、CD、BD于E、F、O,連接DE、BF.
(1)求證:四邊形BEDF是菱形;
(2)若AB=8cm,BC=4cm,求四邊形DEBF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為迎接“校園讀書節(jié)”,計(jì)劃購(gòu)進(jìn)甲、乙兩種圖書作為獎(jiǎng)品已知甲種圖書的單價(jià)比乙種圖書的單價(jià)多10元;且購(gòu)買3本甲種圖書和2本乙種圖書共需花費(fèi)130元
(1)甲、乙兩種圖書的單價(jià)分別為多少元?
(2)學(xué)校計(jì)劃購(gòu)買這兩種圖書共40本,且投入總經(jīng)費(fèi)不超過(guò)980元,則最多可以購(gòu)買甲種圖書多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的直徑AB與弦CD互相垂直,垂足為點(diǎn)E. ⊙O的切線BF與弦AD的延長(zhǎng)線相交于點(diǎn)F,且AD=3,cos∠BCD= .
(1)求證:CD∥BF;
(2)求⊙O的半徑;
(3)求弦CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩直線AB,CD相交于點(diǎn)O,OE平分∠BOD,∠AOC∶∠AOD=7∶11.
(1)求∠COE的度數(shù);
(2)若OF⊥OE,求∠COF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市體育中考項(xiàng)目分為必測(cè)項(xiàng)目和選測(cè)項(xiàng)目,必測(cè)項(xiàng)目為:跳繩、立定跳遠(yuǎn);選測(cè)項(xiàng)目為50米、實(shí)心球、踢毽子三項(xiàng)中任選一項(xiàng).
(1)每位考生將有 種選擇方案;
(2)用畫樹狀圖或列表的方法求小穎和小華將選擇同種方案的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】菱形ABCD中,AB=5,AE是BC邊上的高,AE=4,則對(duì)角線BD的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三角形ABC中, D,E,F三點(diǎn)分別在AB,AC,BC上,過(guò)點(diǎn)D的直線與線段EF的交點(diǎn)為點(diǎn)M,已知2∠1-∠2=150°,2∠ 2-∠1=30°.
(1)求證:DM∥AC;
(2)若DE∥BC,∠C =50°,求∠3的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于實(shí)數(shù),定義兩種新運(yùn)算“※”和“”: ※,(其中為常數(shù),且,若對(duì)于平面直角坐標(biāo)系中的點(diǎn),有點(diǎn)的坐標(biāo)※,與之對(duì)應(yīng),則稱點(diǎn)的“衍生點(diǎn)”為點(diǎn).例如:的“2衍生點(diǎn)”為,即.
(1)點(diǎn)的“3衍生點(diǎn)”的坐標(biāo)為 ;
(2)若點(diǎn)的“5衍生點(diǎn)” 的坐標(biāo)為,求點(diǎn)的坐標(biāo);
(3)若點(diǎn)的“衍生點(diǎn)”為點(diǎn),且直線平行于軸,線段的長(zhǎng)度為線段長(zhǎng)度的3倍,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com