【題目】某地區(qū)的居民用電,按照高峰時段和空閑時段規(guī)定了不同的單價.某戶5月份高峰時段用電量是空閑時段用電量2倍,6月份高峰時段用電量比5月份高峰時段用電量少50%,結(jié)果6月份的用電量和5月份的用電量相等,但6月份的電費卻比5月份的電費少25%,求該地區(qū)空閑時段民用電的單價比高峰時段的用電單價低的百分率是_____

【答案】60%

【解析】

設(shè)空閑時段民用電的單價為x/千瓦時,高峰時段民用電的單價為y/千瓦時,該用戶5月份空閑時段用電量為a千瓦時,則5月份高峰時段用電量為2a千瓦時,6月份空閑時段用電量為2a千瓦時,6月份高峰時段用電量為a千瓦時,根據(jù)總價=單價×數(shù)量結(jié)合6月份的電費卻比5月份的電費少25%,即可得出關(guān)于x,y的二元一次方程,解之即可得出x,y之間的關(guān)系,進而即可得出結(jié)論.

設(shè)空閑時段民用電的單價為x/千瓦時,高峰時段民用電的單價為y/千瓦時,該用戶5月份空閑時段用電量為a千瓦時,則5月份高峰時段用電量為2a千瓦時,6月份空閑時段用電量為2a千瓦時,6月份高峰時段用電量為a千瓦時,

依題意,得:(125%)(ax+2ay)=2ax+ay,

解得:x0.4y

∴該地區(qū)空閑時段民用電的單價比高峰時段的用電單價低×100%60%

故答案為60%

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠BAC=45°,CDAB于點D,AEBC于點E,連接DE

(1)如圖1,當ABC為銳角三角形時,

①依題意補全圖形,猜想∠BAE與∠BCD之間的數(shù)量關(guān)系并證明;

②用等式表示線段AE,CE,DE的數(shù)量關(guān)系,并證明;

(2)如圖2,當∠ABC為鈍角時,依題意補全圖形并直接寫出線段AE,CE,DE的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用一段長為30m的籬笆圍成一個一邊靠墻的矩形菜園(矩形ABCD),墻長為22m,這個矩形的長ABxm,菜園的面積為Sm2,且ABAD

1)求Sx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

2)若要圍建的菜園為100m2時,求該萊園的長.

3)當該菜園的長為多少m時,菜園的面積最大?最大面積是多少m2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等腰直角三角形,點分別在、上,,將繞點順時針旋轉(zhuǎn),點的對應(yīng)點恰好落在上,則值為()

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司推銷一種產(chǎn)品,公司付給推銷員的月報酬有兩種方案如圖所示:方案一所示圖形是頂點在原點的拋物線的一部分,方案二所示圖形是射線.其中(件)表示推銷員推銷產(chǎn)品的數(shù)量,(元)表示付給推銷員的月報酬.

1)分別求兩種方案中關(guān)于的函數(shù)關(guān)系式;

2)當推銷員推銷產(chǎn)品的數(shù)量達到多少件時,兩種方案月報酬差額將達到元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:AOBCOD均為等腰直角三角形,∠AOB=∠COD90°.連接AD,BC,點HBC中點,連接OH

1)如圖1所示,若AB8,CD2,求OH的長;

2)將COD繞點O旋轉(zhuǎn)一定的角度到圖2所示位置時,線段OHAD有怎樣的數(shù)量和位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O是△ABC的外接圓,AB是⊙O的直徑,DAB延長線上的一點,AECDDC的延長線于E,交⊙OGCFABF,點C是弧BG的中點.

1)求證:DE是⊙O的切線;

2)若AFBFAFBF)是一元二次方程x28x+120的兩根,求CEAG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,是角平分線,平分于點,經(jīng)過兩點的于點,交于點,恰為的直徑.

(1)求證:相切;

(2)時,求的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙的外接圓,是⊙的直徑,延長線上的一點,的延長線于,交⊙,,是弧的中點.

⑴求證:是⊙的切線;

⑵若是一元二次方程的兩根,求的長.

查看答案和解析>>

同步練習冊答案