【題目】在某市舉辦的以“校園文明”為主題的中小學生手抄報比賽中,各學校認真組織初賽并按比例篩選出較好的作品參加全市決賽,所有參加市級決賽的作品均獲獎,獎項分為一等獎.二等獎、三等獎和優(yōu)秀獎.現(xiàn)從參加決賽的作品中隨機抽取部分作品并將獲獎結果繪制成如下兩幅統(tǒng)計圖請你根據(jù)圖中所給信息解答下列問題:
(1)一等獎所占的百分比是多少?三等獎的人數(shù)是多少?
(2)求三等獎所對應的扇形圓心角的度數(shù);
(3)若參加決賽的作品有3000份,估計獲得一等獎和二等獎的總人數(shù)有多少?
【答案】(1)32人;(2)115.2°;(3)840人.
【解析】
(1)先求出抽樣人數(shù)=優(yōu)秀人數(shù)÷優(yōu)秀百分比,用一等獎的人數(shù)除以總人數(shù)即可,三等獎百分比=1-(二等獎百分比+一等獎百分比+優(yōu)秀獎百分比),再用三等獎百分比×總人數(shù)即可;(2)根據(jù)圓心角=360°×百分比計算即可;(3)一等獎和二等獎總人數(shù)=總份數(shù)×(一等獎百分比+優(yōu)秀獎百分比)即可.
解:(1)由圖可得:抽樣人數(shù)為:40÷40%=100人,
∴一等獎所占的百分比是:8÷100×100%=8%
二等獎的人數(shù)為:100×20%=20人
∴三等獎的人數(shù)為:100﹣8﹣20﹣40=32人;
(2)三等獎所對應的扇形圓心角的度數(shù)為:32÷100×360°=115.2°
(3)一等獎和二等獎的總人數(shù)為:3000× =840人.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2,BC=4,點P是BC邊上的一個動點(點P不與點B,C重合),現(xiàn)將△ABP沿直線AP折疊,使點B落到點B′處;作∠B′PC的角平分線交CD于點E.設BP=x,CE=y,則下列圖象中,能表示y與x的函數(shù)關系的圖象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標中,點A(1,2),將AO繞點A逆時針旋轉90°,點O的對應點B恰好落在雙曲線y=(x>0)上,則k的值為( )
A. 2 B. 3 C. 4 D. 6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】金松科技生態(tài)農(nóng)業(yè)養(yǎng)殖有限公司種植和銷售一種綠色羊肚菌,已知該羊肚菌的成本是12元/千克,規(guī)定銷售價格不低于成本,又不高于成本的兩倍.經(jīng)過市場調查發(fā)現(xiàn),某天該羊肚菌的銷售量y(千克)與銷售價格x(元/千克)的函數(shù)關系如下圖所示:
(1)求y與x之間的函數(shù)解析式;
(2)求這一天銷售羊肚菌獲得的利潤W的最大值;
(3)若該公司按每銷售一千克提取1元用于捐資助學,且保證每天的銷售利潤不低于3600元,問該羊肚菌銷售價格該如何確定.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是BC邊上的一個動點,沿著AE翻折矩形,使點B落在點F處若AB=3,BC=AB,解答下列問題:
(1)在點E從點B運動到點C的過程中,求點F運動的路徑長;
(2)當點E是BC的中點時,試判斷FC與AE的位置關系,并說明你的理由;
(3)當點F在矩形ABCD內部且DF=CD時,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020,則2S=2+22+23+24+…+22021,因此2S-S=22021-1.仿照以上推理,計算出1+2020+20202+20203+…+20202020的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點,與y軸交于點N,其頂點為D.
(1)求拋物線及直線AC的函數(shù)關系式;
(2)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值及此時點P的坐標;
(3)在對稱軸上是否存在一點M,使△ANM的周長最。舸嬖冢埱蟪M點的坐標和△ANM周長的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)圖象的頂點坐標為A(1,4),與坐標軸交于B、C、D三點,且B點的坐標為(﹣1,0).
(1)求二次函數(shù)的解析式;
(2)在二次函數(shù)圖象位于x軸上方部分有兩個動點M、N,且點N在點M的左側,過M、N作x軸的垂線交x軸于點G、H兩點,當四邊形MNHG為矩形時,求該矩形周長的最大值;
(3)當矩形MNHG的周長最大時,能否在二次函數(shù)圖象上找到一點P,使△PNC的面積是矩形MNHG面積的?若存在,求出該點的橫坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com