【題目】如圖,已知∠1=2,∠B=C.求證:(1ABCD;(2) AEC=3.

【答案】(1)答案見詳解,(2)答案見詳解.

【解析】

1)由∠1=2結合對頂角相等即可得出∠2=4,進而可證出CEBF,再根據(jù)平行線的性質可得出∠3=C=B,利用平行線的判定定理即可證出ABCD;

(2)由ABCD可得∠AEC=C,再根據(jù)(1)中∠B=C=3即可證得∠AEC=3.

證明:(1)∵∠1=2(已知),∠1=4(對頂角相等),
∴∠2=4(等量替換),
CEBF(同位角相等,兩直線平行),
∴∠3=C(兩直線平行,同位角相等).
又∵∠B=C(已知),
∴∠3=B(等量替換),
ABCD(內錯角相等,兩直線平行).
2)∵ABCD(已知),
∴∠AEC=C(兩直線平行,內錯角相等).
∵∠B=C=3(由(1)可知),
∴∠AEC=3(等量替換).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ABBE于點B,DEBE于點E.

(1)若∠A=D,AB=DE,則ABCDEF全等的理由是____;

(2)若∠A=D,BC=EF,則ABCDEF全等的理由是_________;

(3)AB=DE,BC=EF,則ABCDEF全等的理由是_______;

(4)AB=DE,AC=DF,則ABCDEF全等的理由是_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B、FC、E在直線l上(F、C之間不能直接測量),點A、Dl異側,測得ABDE,ABDE,AD

(1)求證:△ABC≌△DEF

(2)BE=10m,BF=3m,求FC的長度

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】南海是我國的南大門,如圖所示,某天我國一艘海監(jiān)執(zhí)法船在南海海域正在進行常態(tài)化巡航,在A處測得北偏東30°方向上,距離為20海里的B處有一艘不明身份的船只正在向正東方向航行,便迅速沿北偏東75°的方向前往監(jiān)視巡查,經過一段時間后,在C處成功攔截不明船只,問我海監(jiān)執(zhí)法船在前往監(jiān)視巡查的過程中行駛了多少海里(最后結果保留整數(shù))?
(參考數(shù)據(jù):cos75°=0.2588,sin75°=0.9659,tan75°=3.732, =1.732, =1.414)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各式,屬于二元一次方程的個數(shù)有( 。

①xy+2xy7②4x+1xy;+y5;④xy;⑤x2y22⑥6x2y;⑦x+y+z1⑧yy1)=2x2y2+xy

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是一個長為2a,寬為2b的長方形,沿圖中虛線剪開分成四塊小長方形,然后按圖2的形狀拼成一個正方形.

1)寫出圖2的陰影部分的正方形的邊長.

2)用兩種不同的方法求圖中的陰影部分的面積.

3)觀察如圖2,寫出這三個代數(shù)式之間的等量關系.

4)根據(jù)(3)題中的等量關系,解決問題:若的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中,O為坐標原點,點A坐標為(1,0),以OA為邊在第一象限內作等邊△OAB,C為x軸正半軸上的一個動點(OC>1),連接BC,以BC為邊在第一象限內作等邊△BCD,直線DA交y軸于E點.

(1)如圖,當C點在x軸上運動時,設AC=x,請用x表示線段AD的長;
(2)隨著C點的變化,直線AE的位置變化嗎?若變化,請說明理由;若不變,請求出直線AE的解析式.
(3)以線段BC為直徑作圓,圓心為點F,當點C坐標為多少時直線EF∥直線BO?這時OF和直線BO的位置關系如何?請給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某高校共有5個大餐廳和2個小餐廳,經過測試:同時開放1個大餐廳、2個小餐廳,可供1680名學生就餐;同時開放2個大餐廳,1個小餐廳,可供2280名學生就餐.

1)求1個大餐廳,1個小餐廳分別可供多少名 就餐?

2)若7個餐廳同時開放,能否供全校的5300名學生就餐?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從A地到B地的公路需經過C地,圖中AC=6千米,∠CAB=15°,∠CBA=30°.因城市規(guī)劃的需要,將在A,B兩地之間修建一條筆直的公路.

(1)求改直后的公路AB的長;
(2)問公路改直后該段路程比原來縮短了多少千米?(結果保留根號)

查看答案和解析>>

同步練習冊答案