【題目】下列各式,屬于二元一次方程的個數(shù)有(  )

①xy+2xy7;②4x+1xy+y5;④xy;⑤x2y22;⑥6x2y;⑦x+y+z1;⑧yy1)=2x2y2+xy

A.1B.2C.3D.4

【答案】B

【解析】

根據(jù)二元一次方程的定義對各式進(jìn)行判斷即可.

①xy+2xy7屬于二元二次方程,故錯誤;

②4x+1xy、④xy屬于二元一次方程,故正確;

+y5是分式方程,故錯誤;

⑤x2y22屬于二元二次方程,故錯誤;

⑥6x2y不是方程,故錯誤;

⑦x+y+z1屬于三元一次方程,故錯誤;

⑧yy1)=2x2y2+xy屬于二元二次方程,故錯誤.

綜上所述,屬于二元一次方程的個數(shù)有2個.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,在ABC中,BD,CD分別平分∠ABC,ACB,過點DEFBCAB,AC于點E,F(xiàn),試說明BE+CF=EF的理由;

(2)如圖2,BD,CD分別平分∠ABC,ACG,過點DEFBCAB,AC于點E,F(xiàn),則BE,CF,EF有怎樣的數(shù)量關(guān)系?并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究題.

已知:如圖

求證:

老師要求學(xué)生在完成這道教材上的題目證明后,嘗試對圖形進(jìn)行變式,繼續(xù)做拓展探究,看看有什么新發(fā)現(xiàn)?

1)小穎首先完成了對這道題的證明,在證明過程中她用到了平行線的一條性質(zhì),小穎用到的平行線性質(zhì)可能是_________

2)接下來,小穎用《幾何畫板》對圖形進(jìn)行了變式,她先畫了兩條平行線然后在平行線間畫了一點,連接后,用鼠標(biāo)拖動點分別得到了圖①②③,小穎發(fā)現(xiàn)圖②正是上面題目的原型,于是她由上題的結(jié)論猜想到圖①和③中的之間也可能存在著某種數(shù)量關(guān)系于是她利用《幾何畫板》的度量與計算功能,找到了這三個角之間的數(shù)量關(guān)系.

請你在小穎操作探究的基礎(chǔ)上,繼續(xù)完成下面的問題:

①猜想圖①中之間的數(shù)量關(guān)系并加以證明:

②補(bǔ)全圖③,直接寫出之間的數(shù)量關(guān)系:_______

3)學(xué)以致用:一個小區(qū)大門欄桿的平面示意圖如圖所示,垂直地面平行于地面

,若,則_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是ABCD的對角線,AE⊥BD,CF⊥BD,垂足分別為E、F,求證:AE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=DAE=90°,連結(jié)CEAD于點F,連結(jié)BDCE于點G,連結(jié)BE.下列結(jié)論:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=AEB;S四邊形BCDEBD·CE;BC2+DE2=BE2+CD2.其中正確的結(jié)論有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1=2,∠B=C.求證:(1ABCD;(2) AEC=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E、F是邊長為4的正方形ABCD邊AD、AB上的動點,且AF=DE,BE交CF于點P,在點E、F運動的過程中,PA的最小值為(
A.2
B.2
C.4 ﹣2
D.2 ﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x、y的方程組 ,給出下列說法:
①當(dāng)a=1時,方程組的解也是方程x+y=2的一個解;
②當(dāng)x﹣2y>8時,a> ;
③不論a取什么實數(shù),2x+y的值始終不變;
④若y=x2+5,則a=﹣4. 以上說法正確的是( )
A.②③④
B.①②④
C.③④
D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B在線段AC的延長線上,AC<CB,M、N分別是AC、BC的中點,點DAB的中點.

1)若AC=8cm,CB=10cm,求線段MN的長;

2)若AC=a,CB=b,求線段CD的長.

查看答案和解析>>

同步練習(xí)冊答案