【題目】已知關(guān)于x、y的方程組 ,給出下列說法:
①當(dāng)a=1時,方程組的解也是方程x+y=2的一個解;
②當(dāng)x﹣2y>8時,a> ;
③不論a取什么實(shí)數(shù),2x+y的值始終不變;
④若y=x2+5,則a=﹣4. 以上說法正確的是( )
A.②③④
B.①②④
C.③④
D.②③

【答案】A
【解析】解:關(guān)于x、y的方程組 ,

解得:

①將a=1代入 ,得: ,

將x=4,y=﹣4代入方程左邊得:x+y=0,右邊=2,左邊≠右邊,本選項(xiàng)錯誤;

②當(dāng)x﹣2y>8時,

a+3﹣2(﹣2a﹣2)>8,

解得a> ,本選項(xiàng)正確;

③將原方程組中第一個方程×3,加第二個方程得:4x+2y=8,

即2x+y=4,不論a取什么實(shí)數(shù),2x+y的值始終不變,本選項(xiàng)正確;

④若y=x2+5,則﹣2a﹣2=(a+3)2+5,

解得a=﹣4,此選項(xiàng)正確.

所以答案是:A.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二元一次方程組的解的相關(guān)知識,掌握二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=90°,C=30°,ADBCD,BE是∠ABC的平分線,且交ADP,如果AP=2,則AC的長為( )

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式,屬于二元一次方程的個數(shù)有( 。

①xy+2xy7;②4x+1xy+y5;④xy;⑤x2y22;⑥6x2y;⑦x+y+z1;⑧yy1)=2x2y2+xy

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A坐標(biāo)為(1,0),以O(shè)A為邊在第一象限內(nèi)作等邊△OAB,C為x軸正半軸上的一個動點(diǎn)(OC>1),連接BC,以BC為邊在第一象限內(nèi)作等邊△BCD,直線DA交y軸于E點(diǎn).

(1)如圖,當(dāng)C點(diǎn)在x軸上運(yùn)動時,設(shè)AC=x,請用x表示線段AD的長;
(2)隨著C點(diǎn)的變化,直線AE的位置變化嗎?若變化,請說明理由;若不變,請求出直線AE的解析式.
(3)以線段BC為直徑作圓,圓心為點(diǎn)F,當(dāng)點(diǎn)C坐標(biāo)為多少時直線EF∥直線BO?這時OF和直線BO的位置關(guān)系如何?請給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ECD的中點(diǎn),連接AE、BE,BEAE,延長AEBC的延長線于點(diǎn)F.

求證:(1)FC=AD;

(2)AB=BC+AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高校共有5個大餐廳和2個小餐廳,經(jīng)過測試:同時開放1個大餐廳、2個小餐廳,可供1680名學(xué)生就餐;同時開放2個大餐廳,1個小餐廳,可供2280名學(xué)生就餐.

1)求1個大餐廳,1個小餐廳分別可供多少名 就餐?

2)若7個餐廳同時開放,能否供全校的5300名學(xué)生就餐?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果兩個角的差的絕對值等于90°,就稱這兩個角互為垂角,其中一個角叫另一個角的垂角.

(1)如圖1O為直線AB上一點(diǎn),∠AOC90°,∠EOD90°,直接寫出圖中∠BOE的垂角為   ;

(2)如果一個角的垂角等于這個角的補(bǔ)角的,求這個角的度數(shù);

(3)如圖2,O為直線AB上一點(diǎn),∠AOC75°,將整個圖形繞點(diǎn)O逆時針旋轉(zhuǎn)n°(0n180),直線AB旋轉(zhuǎn)到A1B1,OC旋轉(zhuǎn)到OC1,作射線OP,使∠BOPBOB′,試直接寫出當(dāng)n   時,∠POA1與∠AOC1互為垂角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長是4,點(diǎn)PAD邊的中點(diǎn),點(diǎn)E是正方形邊上的一點(diǎn),若△PBE是等腰三角形,則腰長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個長為4,寬為3,高為12矩形牛奶盒,從上底一角的小圓孔插入一根到達(dá)底部的直吸管,吸管在盒內(nèi)部分a的長度范圍是(牛奶盒的厚度、小圓孔的大小及吸管的粗細(xì)均忽略不計(jì))(  )

A. 5≤a≤12B. 12≤a≤3

C. 12≤a≤4D. 12≤a≤13

查看答案和解析>>

同步練習(xí)冊答案