【題目】草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價x(元)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象.

(1)求y與x的函數(shù)解析式(也稱關(guān)系式)
(2)設(shè)該水果銷售店試銷草莓獲得的利潤為W元,求W的最大值.

【答案】
(1)

解:設(shè)y與x的函數(shù)關(guān)系式為y=kx+b,

根據(jù)題意,得:

解得: ,

∴y與x的函數(shù)解析式為y=﹣2x+340,(20≤x≤40)


(2)

解:由已知得:W=(x﹣20)(﹣2x+340)

=﹣2x2+380x﹣6800

=﹣2(x﹣95)2+11250,

∵﹣2<0,

∴當(dāng)x≤95時,W隨x的增大而增大,

∵20≤x≤40,

∴當(dāng)x=40時,W最大,最大值為﹣2(40﹣95)2+11250=5200元


【解析】(1)待定系數(shù)法求解可得;(2)根據(jù):總利潤=每千克利潤×銷售量,列出函數(shù)關(guān)系式,配方后根據(jù)x的取值范圍可得W的最大值.
本題主要考查待定系數(shù)法求一次函數(shù)解析式與二次函數(shù)的應(yīng)用,根據(jù)相等關(guān)系列出函數(shù)解析式,并由二次函數(shù)的性質(zhì)確定其最值是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某物流公司引進(jìn)A、B兩種機(jī)器人用來搬運(yùn)某種貨物,這兩種機(jī)器人充滿電后可以連續(xù)搬運(yùn)5小時,A種機(jī)器人于某日0時開始搬運(yùn),過了1小時,B種機(jī)器人也開始搬運(yùn),如圖,線段OG表示A種機(jī)器人的搬運(yùn)量yA(千克)與時間x(時)的函數(shù)圖象,根據(jù)圖象提供的信息,解答下列問題:
(1)求yB關(guān)于x的函數(shù)解析式;
(2)如果A、B兩種機(jī)器人連續(xù)搬運(yùn)5個小時,那么B種機(jī)器人比A種機(jī)器人多搬運(yùn)了多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,D為AB上一點.已知△ADC與△DBC的面積比為1:3,且AD=3,AC=6,請求出BD的長度,并完整說明為何∠ACD=∠B的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,∠A=30°,點D,E分別在邊AC,AB上,點D與點A,點C都不重合,點F在邊CB的延長線上,且AE=ED=BF,連接DFAB于點G.若BC=4,則線段EG的長為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.

(1)求證:ΔABC△DEF;

(2)若∠A=55°,B=88°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系中,點P從原點O以每秒1個單位速度沿x軸正方向運(yùn)動,運(yùn)動時間為t秒,作點P關(guān)于直線y=tx的對稱點Q,過點Qx軸的垂線,垂足為點A.

(1)當(dāng)t=2時,求AO的長.

(2)當(dāng)t=3時,求AQ的長.

(3)在點P的運(yùn)動過程中,用含t的代數(shù)式表示線段AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,AB=2,動點DB開始沿BC向點C運(yùn)動,到達(dá)點C后停止運(yùn)動,將△ABD繞點A旋轉(zhuǎn)后得到△ACE,則下列說法中,正確的是( 。

①DE的最小值為1;②ADCE的面積是不變的;在整個運(yùn)動過程中,點E運(yùn)動的路程為2;④在整個運(yùn)動過程中,△ADE的周長先變小后變大.

A. ①③④ B. ①②③ C. ②③④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,A=90°,AB=AC,O是BC的中點,如果在AB和AC上分別有一個動點M、N在移動,且在移動時保持AN=BM,請你判斷OMN的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠ABC=72°.

(1)用直尺和圓規(guī)作∠ABC的平分線BD交AC于點D(保留作圖痕跡,不要求寫作法);
(2)在(1)中作出∠ABC的平分線BD后,求∠BDC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案