【題目】如圖,在△ABC中,AB=AC,∠ABC=72°.
(1)用直尺和圓規(guī)作∠ABC的平分線(xiàn)BD交AC于點(diǎn)D(保留作圖痕跡,不要求寫(xiě)作法);
(2)在(1)中作出∠ABC的平分線(xiàn)BD后,求∠BDC的度數(shù).
【答案】
(1)解:①一點(diǎn)B為圓心,以任意長(zhǎng)長(zhǎng)為半徑畫(huà)弧,分別交AB,BC于點(diǎn)E,F(xiàn);
②分別以點(diǎn)E,F(xiàn)為圓心,以大于 EF為半徑畫(huà)圓,兩圓相交于點(diǎn)G,連接BG角AC于點(diǎn)D即可
(2)解:∵在△ABC中,AB=AC,∠ABC=72°,
∴∠A=180°﹣2∠ABC=180°﹣144°=36°,
∵BD是∠ABC的平分線(xiàn),
∴∠ABD= ∠ABC= ×72°=36°,
∵∠BDC是△ABD的外角,
∴∠BDC=∠A+∠ABD=36°+36°=72°.
【解析】(1)根據(jù)角平分線(xiàn)的作法利用直尺和圓規(guī)作出∠ABC的平分線(xiàn)即可;(2)先根據(jù)等腰三角形的性質(zhì)及三角形內(nèi)角和定理求出∠A的度數(shù),再由角平分線(xiàn)的定義得出∠ABD的度數(shù),再根據(jù)三角形外角的性質(zhì)得出∠BDC的度數(shù)即可.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用等腰三角形的性質(zhì),掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱(chēng):等邊對(duì)等角)即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷(xiāo)售店在草莓銷(xiāo)售旺季,試銷(xiāo)售成本為每千克20元的草莓,規(guī)定試銷(xiāo)期間銷(xiāo)售單價(jià)不低于成本單價(jià),也不高于每千克40元,經(jīng)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量y(千克)與銷(xiāo)售單價(jià)x(元)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象.
(1)求y與x的函數(shù)解析式(也稱(chēng)關(guān)系式)
(2)設(shè)該水果銷(xiāo)售店試銷(xiāo)草莓獲得的利潤(rùn)為W元,求W的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=﹣x2+bx+c與x軸相交于A(yíng),B兩點(diǎn),與y軸相交于點(diǎn)C(0,3),點(diǎn)B坐標(biāo)是(3,0),設(shè)拋物線(xiàn)的頂點(diǎn)為點(diǎn)D.
(1)求此拋物線(xiàn)的解析式與對(duì)稱(chēng)軸;
(2)作直線(xiàn)BC,與拋物線(xiàn)的對(duì)稱(chēng)軸交于點(diǎn)E,點(diǎn)P為直線(xiàn)BC上方的二次函數(shù)上一個(gè)動(dòng)點(diǎn)(且點(diǎn)P與點(diǎn)B,C不重合),過(guò)點(diǎn)P作PF∥DE交直線(xiàn)BC于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m;
①用含m的代數(shù)式表示線(xiàn)段PF的長(zhǎng),并求出當(dāng)m為何值時(shí),四邊形PDEF為平行四邊形?
②設(shè)△PBC的面積為S,求S與m的函數(shù)關(guān)系式.S是否存在最大值?若存在,求出最大值并求出此時(shí)P點(diǎn)坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(4,﹣1).
①以原點(diǎn)O為對(duì)稱(chēng)中心,畫(huà)出△ABC關(guān)于原點(diǎn)O對(duì)稱(chēng)的△A1B1C1;
②將△ABC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到△AB2C2 , 畫(huà)出△AB2C2 , 并求出AC掃過(guò)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)12的正方形ABCD中,有一個(gè)小正方形EFGH,其中E,F(xiàn),G分別在A(yíng)B,BC,F(xiàn)D上.若BF=3,則小正方形的邊長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,長(zhǎng)方形MNPO的邊OM在x軸上,邊OP在y軸上,點(diǎn)N的坐標(biāo)為(3,9),將矩形沿對(duì)角線(xiàn)PM翻折,N點(diǎn)落在F點(diǎn)的位置,且FM交y軸于點(diǎn)E,那么點(diǎn)F的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,AB=BC=2,D為BC的中點(diǎn),在A(yíng)C邊上存在一點(diǎn)E,連結(jié)ED,EB,則△BDE周長(zhǎng)的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)4+﹣+4
(2)(3﹣2+)÷2
(3)+﹣(﹣1)0
(4)÷﹣﹣
(5)(﹣3)2+(﹣3)(+3)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com