在平面直角坐標系xOy中,將拋物線y=2x2沿y軸向上平移1個單位,再沿x軸向右平移兩個單位,平移后拋物線的頂點坐標記作A,直線x=3與平移后的拋物線相交于B,與直線OA相交于C.
(1)拋物線解析式;
(2)求△ABC面積;
(3)點P在平移后拋物線的對稱軸上,如果△ABP與△ABC相似,求所有滿足條件的P點坐標.
(1)將拋物線y=2x2沿y軸向上平移1個單位,則y=2x2+1,
再沿x軸向右平移兩個單位后y=2(x-2)2+1,
所以平移后拋物線的解析式為y=2(x-2)2+1;

(2)∵平移后拋物線的解析式為y=2(x-2)2+1.
∴A點坐標為(2,1),
設直線OA解析式為y=kx,將A(2,1)代入
得k=
1
2
,
∴直線OA解析式為y=
1
2
x,
將x=3代入y=
1
2
x得;y=
3
2
,
∴C點坐標為(3,
3
2
),
將x=3代入y=2(x-2)2+1得y=3,
∴B點坐標為(3,3).
∴S△ABC
3
4
;

(3)∵PABC,
∴∠PAB=∠ABC
①當∠PBA=∠BAC時,PBAC,
∴四邊形PACB是平行四邊形,
∴PA=BC=
3
2
,
∴P1(2,
5
2
),
②當∠APB=∠BAC時,
AP
AB
=
AB
BC
,
∴AP=
AB2
BC
,
又∵AB=
(3-2)2+(3-1)2
=
5

∴AP=
10
3
,
∴P2(2,1+
10
3
)即P2(2,
13
3
).
綜上所述滿足條件的P點有(2,
5
2
),(2,
13
3
).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,點O是坐標原點,點P(m,-1)(m>0).連接OP,將線段OP繞點O按逆時針方向旋轉90°得到線段OM,且點M是拋物線y=ax2+bx+c的頂點.
(1)若m=1,拋物線y=ax2+bx+c經(jīng)過點(2,2),當0≤x≤1時,求y的取值范圍;
(2)已知點A(1,0),若拋物線y=ax2+bx+c與y軸交于點B,直線AB與拋物線y=ax2+bx+c有且只有一個交點,請判斷△BOM的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在平面直角坐標系xOy中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=2,OC=3.過原點O作∠AOC的平分線交AB于點D,連接DC,過點D作DE⊥DC,交OA于點E.
(1)求過點E、D、C的拋物線的解析式;
(2)將∠EDC繞點D按順時針方向旋轉后,角的一邊與y軸的正半軸交于點F,另一邊與線段OC交于點G.如果DF與(1)中的拋物線交于另一點M,點M的橫坐標為
6
5
,那么EF=2GO是否成立?若成立,請給予證明;若不成立,請說明理由;
(3)對于(2)中的點G,在位于第一象限內的該拋物線上是否存在點Q,使得直線GQ與AB的交點P與點C、G構成的△PCG是等腰三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,已知:拋物線y=
1
2
x2+bx+c
與x軸交于A、B兩點,與y軸交于點C,經(jīng)過B、C兩點的直線是y=
1
2
x-2
,連接AC.
(1)寫出B、C兩點坐標,并求拋物線的解析式;
(2)判斷△ABC的形狀,并說明理由;
(3)若△ABC內部能否截出面積最大的矩形DEFG(頂點D、E、F、G在△ABC各邊上)?若能,求出在AB邊上的矩形頂點的坐標;若不能,請說明理由.
{拋物線y=ax2+bx+c的頂點坐標是(-
b
2a
,
4ac-b2
4a
)
}.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,平面直角坐標系xOy中,拋物線y=
1
2
x2+bx+c
與x軸交于A、B兩點,點C是AB的中點,CD⊥AB且CD=AB.直線BE與y軸平行,點F是射線BE上的一個動點,連接AD、AF、DF.
(1)若點F的坐標為(
9
2
,1),AF=
17

①求此拋物線的解析式;
②點P是此拋物線上一個動點,點Q在此拋物線的對稱軸上,以點A、F、P、Q為頂點構成的四邊形是平行四邊形,請直接寫出點Q的坐標;
(2)若2b+c=-2,b=-2-t,且AB的長為kt,其中t>0.如圖2,當∠DAF=45°時,求k的值和∠DFA的正切值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,EF是一面長18米的墻,用總長為32米的木柵欄(圖中的虛線)圍一個矩形場地,中間還要隔成三塊.設與墻頭垂直的邊AD長為x米,
(1)用含x的代數(shù)式表示AB的長為______米;
(2)若要圍成的矩形面積為60米2,求AB的長;
(3)當x為何值時,矩形的面積S最大?是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

二次函數(shù)y=ax2的圖象過(2,1),則二次函數(shù)的表達式為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某鎮(zhèn)地理環(huán)境偏僻,嚴重制約經(jīng)濟發(fā)展,豐富的花木產(chǎn)品只能在本地銷售.鎮(zhèn)政府對該花木產(chǎn)品每年固定投資x萬元,所獲利潤為P=-
1
50
(x-30)2+10
萬元.為了響應我國西部大開發(fā)的宏偉決策,鎮(zhèn)政府在制定經(jīng)濟發(fā)展的10年規(guī)劃時,擬定開發(fā)花木產(chǎn)品,而開發(fā)前后可用于該項目投資的專項資金每年最多50萬元.若開發(fā)該產(chǎn)品,在前5年中,必須每年從專項資金中拿出25萬元投資修通一條公路;后5年公路修通時,花木產(chǎn)品除在本地銷售外,還可運往外地銷售,運往外地銷售的花木產(chǎn)品,每年固定投資x萬元可獲利潤Q=-
49
50
(50-x)2+
194
5
(50-x)+308
萬元.
(1)若不進行開發(fā),求10年所獲利潤的最大值是多少?
(2)若按此規(guī)劃進行開發(fā),求10年所獲利潤的最大值是多少?
(3)若按此規(guī)劃進行開發(fā)后,后5年所獲利潤共為2400萬元,那么當本地銷售投資金額大于外地銷售投資金額時,每年用于本地銷售投資的金額約為多少萬元?(
13
≈3.606
55
≈7.416
,計算結果保留1位小數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

用長度一定的不銹鋼材料設計成外觀為矩形的框架(如圖1,2中的一種).

設豎檔AB=x米,請根據(jù)以上圖案回答下列問題:(題中的不銹鋼材料總長度均指各圖中所有黑線的長度和,所有橫檔和豎檔分別與AD,AB平行)
(Ⅰ)在圖1中,如果不銹鋼材料總長度為12米,當x為多少時,矩形框架ABCD的面積為3平方米?
(Ⅱ)在圖2中,如果不銹鋼材料總長度為12米,當x為多少時,矩形框架ABCD的面積S最大?最大面積是多少?

查看答案和解析>>

同步練習冊答案