已知:如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=2,OC=3.過(guò)原點(diǎn)O作∠AOC的平分線交AB于點(diǎn)D,連接DC,過(guò)點(diǎn)D作DE⊥DC,交OA于點(diǎn)E.
(1)求過(guò)點(diǎn)E、D、C的拋物線的解析式;
(2)將∠EDC繞點(diǎn)D按順時(shí)針方向旋轉(zhuǎn)后,角的一邊與y軸的正半軸交于點(diǎn)F,另一邊與線段OC交于點(diǎn)G.如果DF與(1)中的拋物線交于另一點(diǎn)M,點(diǎn)M的橫坐標(biāo)為
6
5
,那么EF=2GO是否成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由;
(3)對(duì)于(2)中的點(diǎn)G,在位于第一象限內(nèi)的該拋物線上是否存在點(diǎn)Q,使得直線GQ與AB的交點(diǎn)P與點(diǎn)C、G構(gòu)成的△PCG是等腰三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(1)由已知,得C(3,0),D(2,2),
∵∠ADE=90°-∠CDB=∠BCD,
∴AD=BC.AD=2.
∴E(0,1).(1分)
設(shè)過(guò)點(diǎn)E、D、C的拋物線的解析式為y=ax2+bx+c(a≠0).
將點(diǎn)E的坐標(biāo)代入,得c=1.將c=1和點(diǎn)D、C的坐標(biāo)分別代入,
4a+2b+1=2
9a+3b+1=0
(2分)
解這個(gè)方程組,得
a=-
5
6
b=
13
6

故拋物線的解析式為y=-
5
6
x2+
13
6
x+1;(3分)

(2)EF=2GO成立.(4分)
∵點(diǎn)M在該拋物線上,且它的橫坐標(biāo)為
6
5

∴點(diǎn)M的縱坐標(biāo)為
12
5
.(5分)
設(shè)DM的解析式為y=kx+b1(k≠0),將點(diǎn)D、M的坐標(biāo)分別代入,
2k+b1=2
6
5
k+b1=
12
5
,
解得
k=-
1
2
b1=3

∴DM的解析式為y=-
1
2
x+3.(6分)
∴F(0,3),EF=2.(7分)
過(guò)點(diǎn)D作DK⊥OC于點(diǎn)K,則DA=DK.
∵∠ADK=∠FDG=90°,
∴∠FDA=∠GDK.
又∵∠FAD=∠GKD=90°,
∴△DAF≌△DKG.
∴KG=AF=1.
∵OC=3,
∴GO=1.(8分)
∴EF=2GO;

(3)∵點(diǎn)P在AB上,G(1,0),C(3,0),
則設(shè)P(t,2).
∴PG2=(t-1)2+22,PC2=(3-t)2+22,GC=2.
①PG=PC,則(t-1)2+22=(3-t)2+22
解得t=2.
∴P(2,2),此時(shí)點(diǎn)Q與點(diǎn)P重合,
∴Q(2,2).(9分)
②若PG=GC,則(t-1)2+22=22
解得t=1,
∴P(1,2),
此時(shí)GP⊥x軸.GP與該拋物線在第一象限內(nèi)的交點(diǎn)Q的橫坐標(biāo)為1,
∴點(diǎn)Q的縱坐標(biāo)為
7
3
,
∴Q(1,
7
3
).(10分)
③若PC=GC,則(3-t)2+22=22,解得t=3,
∴P(3,2),此時(shí)PC=GC=2,△PCG是等腰直角三角形.
過(guò)點(diǎn)Q作QH⊥x軸于點(diǎn)H,則QH=GH,設(shè)QH=h,
∴Q(h+1,h).
-
5
6
(h+1)2+
13
6
(h+1)+1=h.
解得h1=
7
5
,h2=-2(舍去).
∴Q(
12
5
,
7
5
).(12分)
綜上所述,存在三個(gè)滿足條件的點(diǎn)Q,即Q(2,2)或Q(1,
7
3
)或Q(
12
5
,
7
5
).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知A(0,1)、D(4,3),P是以AD為對(duì)角線的矩形ABDC內(nèi)部(不在各邊上)的一個(gè)動(dòng)點(diǎn),點(diǎn)C在y軸上,拋物線y=ax2+bx+1以P為頂點(diǎn).
(1)能否判斷拋物線y=ax2+bx+1的開口方向?請(qǐng)說(shuō)明理由.
(2)設(shè)拋物線y=ax2+bx+1與x軸有交點(diǎn)F、E(F在E的左側(cè)),△EAO與△FAO的面積之差為3,且這條拋物線與線段AD有一個(gè)交點(diǎn)的橫坐標(biāo)為
7
2
,這時(shí)能確定a、b的值嗎?若能,請(qǐng)求出a、b的值;若不能,請(qǐng)確定a、b的取值范圍.(本題的圖形僅供分析參考用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A(0,4)、B(2,4),它的最高點(diǎn)縱坐標(biāo)為
14
3
,點(diǎn)P是第一象限拋物線上一點(diǎn)且PA=PO,過(guò)點(diǎn)P的直線分別交射線AB、x正半軸于C、D.設(shè)AC=m,OD=n.
(1)求此拋物線的解析式;
(2)求點(diǎn)P的坐標(biāo)及n關(guān)于m的函數(shù)關(guān)系式;
(3)連接OC交AP于點(diǎn)E,如果以A、C、E為頂點(diǎn)的三角形與△ODP相似,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,將拋物線y=2x2沿y軸向上平移1個(gè)單位,再沿x軸向右平移兩個(gè)單位,平移后拋物線的頂點(diǎn)坐標(biāo)記作A,直線x=3與平移后的拋物線相交于B,與直線OA相交于C.
(1)拋物線解析式;
(2)求△ABC面積;
(3)點(diǎn)P在平移后拋物線的對(duì)稱軸上,如果△ABP與△ABC相似,求所有滿足條件的P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

把一根長(zhǎng)100cm的鐵絲分為兩部分,每一部分均彎曲成一個(gè)正方形,它們的面積和最小是______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,平面直角坐標(biāo)系上有A(a,0)、B(0,-b)、C(b,0)三點(diǎn),且a≥b>0,拋物線y=(x-2)(x-m)-(n-2)(n-m).(m,n為常數(shù),且m+2≥2n>0),經(jīng)過(guò)點(diǎn)A和點(diǎn)C,頂點(diǎn)為P
(1)當(dāng)m,n滿足什么關(guān)系時(shí),S△AOB最大;
(3)如圖,當(dāng)△ACP為直角三角形時(shí),判斷以下命題是否正確:“直角三角形DEF的三個(gè)頂點(diǎn)都在這條拋物線上,且DFx軸,那么△ACP與△DEF斜邊上的高相等”,如果正確請(qǐng)予以證明,不正確請(qǐng)舉出反例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知某商品的進(jìn)價(jià)為每件40元,售價(jià)是每件60元,每星期可賣出300件.市場(chǎng)調(diào)查反映:如果調(diào)整價(jià)格,每漲價(jià)一元,每星期要少賣出10件.設(shè)該商品定價(jià)為每件x元.
(1)該商店每星期的銷售量是______件(用含x的代數(shù)式表示);
(2)設(shè)商場(chǎng)每星期獲得的利潤(rùn)為y元,求y與x的函數(shù)關(guān)系式;
(3)該商品應(yīng)定價(jià)為多少元時(shí),商場(chǎng)能獲得最大利潤(rùn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=x2-2x-2交x軸于A、B兩點(diǎn),頂點(diǎn)為C,經(jīng)過(guò)A、B、C三點(diǎn)的圓的圓心為M.
(1)求圓心M的坐標(biāo);
(2)求⊙M上劣弧AB的長(zhǎng);
(3)在拋物線上是否存在一點(diǎn)D,使線段OC和MD互相平分?若存在,直接寫出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

體育課上,老師用繩子圍成一個(gè)周長(zhǎng)為30米的游戲場(chǎng)地,圍成的場(chǎng)地是如圖所示的矩形ABCD.設(shè)邊AB的長(zhǎng)為x(單位:米),矩形ABCD的面積為S(單位:平方米).
(1)求S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)若矩形ABCD的面積為50平方米,且AB<AD,請(qǐng)求出此時(shí)AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案