【題目】如圖,已知E,F分別為正方形ABCD的邊ABBC的中點(diǎn),AFDE交于點(diǎn)MOBD的中點(diǎn),則下列結(jié)論:①∠AME=90°;②∠BAF=EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結(jié)論的是(

A. ①③④B. ②④⑤C. ①③⑤D. ①③④⑤

【答案】D

【解析】

根據(jù)正方形的性質(zhì)可得AB=BC=AD,∠ABC=BAD=90°,再根據(jù)中點(diǎn)定義求出AE=BF,然后利用邊角邊證明△ABF和△DAE全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠BAF=ADE,然后求出∠ADE+DAF=BAD=90°,從而求出∠AMD=90°,再根據(jù)鄰補(bǔ)角的定義可得∠AME=90°,從而判斷①正確;根據(jù)中線的定義判斷出∠ADE≠EDB,然后求出∠BAF≠EDB,判斷出②錯(cuò)誤;根據(jù)直角三角形的性質(zhì)判斷出△AED、△MAD、△MEA三個(gè)三角形相似,利用相似三角形對(duì)應(yīng)邊成比例可得,然后求出MD=2AM=4EM,判斷出④正確,設(shè)正方形ABCD的邊長(zhǎng)為2a,利用勾股定理列式求出AF,再根據(jù)相似三角形對(duì)應(yīng)邊成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判斷出⑤正確;過點(diǎn)MMNABN,求出MN、NB,然后利用勾股定理列式求出BM,過點(diǎn)MGHAB,過點(diǎn)OOKGHK,然后求出OK、MK,再利用勾股定理列式求出MO,根據(jù)正方形的性質(zhì)求出BO,然后利用勾股定理逆定理判斷出∠BMO=90°,從而判斷出③正確.

在正方形ABCD中,AB=BC=AD,∠ABC=BAD=90°,
EF分別為邊AB,BC的中點(diǎn),
AE=BF=BC,
在△ABF和△DAE中,


∴△ABF≌△DAESAS),
∴∠BAF=ADE
∵∠BAF+DAF=BAD=90°,
∴∠ADE+DAF=BAD=90°
∴∠AMD=180°-(∠ADE+DAF=180°-90°=90°,
∴∠AME=180°-AMD=180°-90°=90°,故①正確;
DE是△ABD的中線,
∴∠ADE≠EDB,
∴∠BAF≠EDB,故②錯(cuò)誤;
∵∠BAD=90°,AMDE
∴△AED∽△MAD∽△MEA,

AM=2EMMD=2AM,
MD=2AM=4EM,故④正確;
設(shè)正方形ABCD的邊長(zhǎng)為2a,則BF=a,
RtABF中,AF=

∵∠BAF=MAE,∠ABC=AME=90°,
∴△AME∽△ABF,
,

解得AM=
MF=AF-AM=,


AM=MF,故⑤正確;
如圖,過點(diǎn)MMNABN,

解得MN=,AN=
NB=AB-AN=2a-=,
根據(jù)勾股定理,BM=

過點(diǎn)MGHAB,過點(diǎn)OOKGHK
OK=a-=,MK=-a=
RtMKO中,MO=

根據(jù)正方形的性質(zhì),BO=2a×,
BM2+MO2=


BM2+MO2=BO2,
∴△BMO是直角三角形,∠BMO=90°,故③正確;
綜上所述,正確的結(jié)論有①③④⑤共4個(gè).

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O為矩形ABCD對(duì)角線交點(diǎn),,點(diǎn)E、F、G分別從D,C,B三點(diǎn)同時(shí)出發(fā),沿矩形的邊DC、CB、BA勻速運(yùn)動(dòng),點(diǎn)E的運(yùn)動(dòng)速度為,點(diǎn)F的運(yùn)動(dòng)速度為,點(diǎn)G的運(yùn)動(dòng)速度為,當(dāng)點(diǎn)F到達(dá)點(diǎn)點(diǎn)F與點(diǎn)B重合時(shí),三個(gè)點(diǎn)隨之停止運(yùn)動(dòng)在運(yùn)動(dòng)過程中,關(guān)于直線EF的對(duì)稱圖形是設(shè)點(diǎn)E、F、G運(yùn)動(dòng)的時(shí)間為單位:

當(dāng)______s時(shí),四邊形為正方形;

若以點(diǎn)E、C、F為頂點(diǎn)的三角形與以點(diǎn)F、B、G為頂點(diǎn)的三角形相似,求t的值;

是否存在實(shí)數(shù)t,使得點(diǎn)與點(diǎn)O重合?若存在,直接寫出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)GABC的重心,CG的延長(zhǎng)線交ABD,GA=5GC=4,GB=3,將ADG繞點(diǎn)D順時(shí)針方向旋轉(zhuǎn)180°得到BDE,則EBC的面積=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的平面直角坐標(biāo)系中,△OA1B1是邊長(zhǎng)為2的等邊三角形,作△B2A2B1△OA1B1關(guān)于點(diǎn)B1成中心對(duì)稱,再作△B2A3B3△B2A2B1關(guān)于點(diǎn)B2成中心對(duì)稱,如此作下去,則△B2nA2n+1B2n+1(n是正整數(shù))的頂點(diǎn)A2n+1的坐標(biāo)是(

A. (4n﹣1,B. (2n﹣1,C. (4n+1,D. (2n+1,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中秋節(jié)前夕,某公司的李會(huì)計(jì)受公司委派去超市購買若干盒美心月餅,超市給出了該種月餅不同購買數(shù)量的價(jià)格優(yōu)惠,如圖,折線ABCD表示購買這種月餅每盒的價(jià)格y(元)與盒數(shù)x(盒)之間的函數(shù)關(guān)系.

(1)當(dāng)購買這種月餅盒數(shù)不超過10盒時(shí),一盒月餅的價(jià)格為   元;

(2)求出當(dāng)10<x<25時(shí),yx之間的函數(shù)關(guān)系式;

(3)當(dāng)時(shí)李會(huì)計(jì)支付了3600元購買這種月餅,那么李會(huì)計(jì)買了多少盒這種月餅?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為做好漢江防汛工作,防汛指揮部決定對(duì)一段長(zhǎng)為2500m重點(diǎn)堤段利用沙石和土進(jìn)行加固加寬.專家提供的方案是:使背水坡的坡度由原來的11變?yōu)?/span>11.5,如圖,若CDBA,CD=4米,鉛直高DE=8米.

1)求加固加寬這一重點(diǎn)堤段需沙石和土方數(shù)是多少?

2)某運(yùn)輸隊(duì)承包這項(xiàng)沙石和土的運(yùn)送工程,根據(jù)施工方計(jì)劃在一定時(shí)間內(nèi)完成,按計(jì)劃工作5天后,增加了設(shè)備,工效提高到原來的1.5倍,結(jié)果提前了5天完成任務(wù),問按原計(jì)劃每天需運(yùn)送沙石和土多少m3?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的情景對(duì)話,然后解答問題:

老師:我們新定義一種三角形,兩邊平方和等于第三邊平方的2倍的三角形叫做奇異三角形.

小華:等邊三角形一定是奇異三角形!

小明:那直角三角形是否存在奇異三角形呢?

1)根據(jù)奇異三角形的定義,請(qǐng)你判斷小華提出的命題:等邊三角形一定是奇異三角形是真命題還是假命題?

2)在RtABC中,ABcACb,BCa,且cba,若RtABC是奇異三角形,求abc;

3)如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn)(不與點(diǎn)AB重合),D是半圓 中點(diǎn),C、D在直徑AB的兩側(cè),若在⊙O內(nèi)存在點(diǎn)E,使AEAD,CBCE

①求證:ACE是奇異三角形:

②當(dāng)ACE是直角三角形時(shí),求∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,BE⊥AD于點(diǎn)E,BF⊥CD于點(diǎn)F,ACBEBF分別交于點(diǎn)G,H。

1)求證:△BAE∽△BCF

2)若BGBH,求證四邊形ABCD是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小巷左右兩側(cè)是豎直的墻,一架梯子AC斜靠在右墻,測(cè)得梯子頂端距離地面AB2米,梯子與地面夾角α的正弦值sinα0.8.梯子底端位置不動(dòng),將梯子斜靠在左墻時(shí),頂端距離地面2.4米,則小巷的寬度為( )

A. 0.7B. 1.5

C. 2.2D. 2.4

查看答案和解析>>

同步練習(xí)冊(cè)答案