精英家教網 > 初中數學 > 題目詳情

【題目】如圖,點GABC的重心,CG的延長線交ABD,GA=5,GC=4GB=3,將ADG繞點D順時針方向旋轉180°得到BDE,則EBC的面積=_____

【答案】12

【解析】

根據點G是△ABC的重心,CG的延長線交ABD,GA=5GC=4,GB=3,將△ADG繞點D順時針方向旋轉180°得到△BDE,得出DG=DE=2,以及BE=5,即可得出△EBG的面積,進而得出答案.

解:∵點G是△ABC的重心,CG的延長線交ABD,GC=4,
DE=2
∵將△ADG繞點D順時針方向旋轉180°得到△BDE,
DG=DE=2AG=BE=5,∵BG=3,
∴△BGE是直角三角形,
∴△BGE的面積為:×3×4=6,
∵∠BGE=90°,
∴∠BGC=90°,
∴△BGC的面積為:×3×4=6
∴△EBC的面積為:12
故答案為:12

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】近期,第八屆重慶車博會在會展中心盛大開幕,某汽車公司推出降價促銷活動,銷售員小王提前做了市場調查,發(fā)現車輛的銷量y(輛)與售價(萬元/輛)存在如下表所示的一次函數關系:

售價x(萬元/輛)

20

19.8

19.6

19.4

19.2

19

銷量y(輛)

5

6

7

8

9

10

1)求yx之間的函數關系式;

2)若每輛車的成本為11萬元,在每輛車售價不低于15萬元的前提下,每輛車的售價定為多少萬元時,汽車公司獲得的總利潤W(萬元)有最大值?最大值是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了開展陽光體育運動,堅持讓中小學生每天鍛煉一小時,體育局做了一個隨機調查,調查內容是:每天鍛煉是否超過1h及鍛煉未超過1h的原因.他們隨機調查了340名學生,用所得的數據制成了扇形統(tǒng)計圖和頻數分布直方圖(圖1、圖2).

根據圖示,請回答以下問題:

1沒時間的人數是   ,并補全頻數分布直方圖;

22015年全市中小學生約18萬人,按此調查,可以估計2015年全市中小學生每天鍛煉超過1h的約有   萬人;

3)在(2)的條件下,如果計劃2017年全市中小學生每天鍛煉未超過1h的人數減少到8.64萬人,求2015年至2017年鍛煉未超過1h人數的年平均降低的百分率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知AB是⊙O的直徑,AP是⊙O的切線,A是切點,BP與⊙O交于點C.

(1)如圖①,若∠P=35°,求∠ABP的度數;

(2)如圖②,若DAP的中點,求證:直線CD是⊙O的切線.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在中,,平分于點,上一點,經過點,分別交,于點,,連接于點.

(1)求證:的切線;

(2)設,,試用含的代數式表示線段的長;

(3)若,求的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:在RtABC中,∠C=90°,點OAB上,以O為圓心,OA長為半徑的圓與AC、AB分別交于點D、E,且∠CBD=A
1)觀察圖形,猜想BD與⊙O的位置關系;
2)證明第(1)題的猜想

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,以ABC的三邊為邊分別作等邊ACDABE、BCF。

(1)求證:EBF≌△DFC

(2)求證:四邊形AEFD是平行四邊形;

(3)①△ABC滿足_____________________時,四邊形AEFD是菱形。(無需證明)

②△ABC滿足_______________________時,四邊形AEFD是矩形。(無需證明)

③△ABC滿足_______________________時,四邊形AEFD是正方形。(無需證明)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知E,F分別為正方形ABCD的邊AB,BC的中點,AFDE交于點MOBD的中點,則下列結論:①∠AME=90°;②∠BAF=EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結論的是(

A. ①③④B. ②④⑤C. ①③⑤D. ①③④⑤

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有七張正面分別標有數字﹣1、﹣20、1、2、34的卡片,除數字不同外其余全部相同,現將它們背面朝上,洗勻后從中隨機抽取一張,記卡片上的數字為m,則使關于x的方程x22m1x+m23m0有實數根,且不等式組無解的概率是_____

查看答案和解析>>

同步練習冊答案