【題目】已知:在ABC中,∠ACB=90°,點(diǎn)P是線(xiàn)段AC上一點(diǎn),過(guò)點(diǎn)AAB的垂線(xiàn),交BP的延長(zhǎng)線(xiàn)于點(diǎn)M,MNAC于點(diǎn)NPQAB于點(diǎn)Q,AQ=MN 求證:

1APM是等腰三角形;

2PC=AN

【答案】1)見(jiàn)解析;(2)見(jiàn)解析

【解析】

(1)利用條件得到∠BAM=ANM=90°,∠PAQ=AMN即可解答.

(2)轉(zhuǎn)換角度,利用角平分線(xiàn)性質(zhì)解答.

1)解:∵BAAM,MNAC,

∴∠BAM=ANM=90°,

∴∠PAQ+MAN=MAN+AMN=90°,

∴∠PAQ=AMN,

PQABMNAC,

∴∠PQA=ANM=90°,

AQPMNA中,

∴△AQP≌△MNA

MA=AP,

∴△APM是等腰三角形.

2)解:∵MA=AP,

∴∠AMP=APM,

∵∠APM=BPC,

∴∠AMP=BPC,

∵∠BPC+PBC=90°,∠AMB+ABM=180°-BAM=90°,

∴∠ABM=PBC,

PQAB,PCBC,

PQ=PC(角平分線(xiàn)的性質(zhì)),

由(1)可知AN=PQ,

PC=AN

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CN是等邊的外角內(nèi)部的一條射線(xiàn),點(diǎn)A關(guān)于CN的對(duì)稱(chēng)點(diǎn)為D,連接AD,BDCD,其中AD,BD分別交射線(xiàn)CN于點(diǎn)E,P

(1)依題意補(bǔ)全圖形;

2)若,求的大小(用含的式子表示);

3)用等式表示線(xiàn)段, 之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了了解七年級(jí)學(xué)生體能狀況,從七年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測(cè)試,測(cè)試結(jié)果分為A,B,C,D四個(gè)等級(jí),并依據(jù)測(cè)試成績(jī)繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖:

1)這次抽樣調(diào)查的樣本容量是   ,并補(bǔ)全條形統(tǒng)計(jì)圖;

2)在統(tǒng)計(jì)圖中B等級(jí)所對(duì)應(yīng)的圓心角為   ,D等級(jí)學(xué)生人數(shù)占被調(diào)查人數(shù)的百分比為   ;

3)該校七年級(jí)學(xué)生有1600人,請(qǐng)你估計(jì)其中A等級(jí)的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人們生活水平的不斷提高,人們對(duì)生活飲用水質(zhì)量要求也越來(lái)越高,更多的居民選擇購(gòu)買(mǎi)家用凈水器.一商家抓住商機(jī),從生產(chǎn)廠(chǎng)家購(gòu)進(jìn)了,兩種型號(hào)家用凈水器.已知購(gòu)進(jìn)2臺(tái)型號(hào)家用凈水器比1臺(tái)型號(hào)家用凈水器多用200元;購(gòu)進(jìn)3臺(tái)型號(hào)凈水器和2臺(tái)型號(hào)家用凈水器共用6600

1)求兩種型號(hào)家用凈水器每臺(tái)進(jìn)價(jià)各為多少元?

2)該商家用不超過(guò)26400元共購(gòu)進(jìn),兩種型號(hào)家用凈水器20臺(tái),再將購(gòu)進(jìn)的兩種型號(hào)家用凈水器分別加價(jià)后出售,若兩種型號(hào)家用凈水器全部售出后毛利潤(rùn)不低于12000元,求商家購(gòu)進(jìn),兩種型號(hào)家用凈水器各多少臺(tái)?(注:毛利潤(rùn)售價(jià)進(jìn)價(jià))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,BDAC于D,CEAB于E,BD、CE相交于F.

求證:AF平分∠BAC.

【答案】證明見(jiàn)解析.

【解析】試題分析:先根據(jù)AB=AC,可得∠ABC=ACB,再由垂直,可得90°的角,在BCEBCD中,利用內(nèi)角和為180°,可分別求∠BCE和∠DBC,利用等量減等量差相等,可得FB=FC,再易證ABF≌△ACF,從而證出AF平分∠BAC

試題解析:證明:∵AB=AC(已知)

∴∠ABC=ACB(等邊對(duì)等角).

BD、CE分別是高,

BDAC,CEAB(高的定義).

∴∠CEB=BDC=90°.

∴∠ECB=90°ABC,DBC=90°ACB.

∴∠ECB=DBC(等量代換).

FB=FC(等角對(duì)等邊)

ABFACF中,

,

ABFACF(SSS)

∴∠BAF=CAF(全等三角形對(duì)應(yīng)角相等),

AF平分∠BAC.

型】解答
結(jié)束】
23

【題目】如圖,在△ABC中,AC=BC,∠C=90°,AD△ABC的角平分線(xiàn),DE⊥AB,垂足為E

1)求證:CD=BE;

2)已知CD=2,求AC的長(zhǎng);

3)求證:AB=AC+CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)1上有AB兩點(diǎn),AB=12cm,點(diǎn)O是線(xiàn)段AB上的一點(diǎn),OA=2OB

1OA=______cmOB=______cm

2)若點(diǎn)C是線(xiàn)段AB上一點(diǎn)(點(diǎn)C不與點(diǎn)AB重合),且滿(mǎn)足AC=CO+CB,求CO的長(zhǎng);

3)若動(dòng)點(diǎn)P,Q分別從A,B同時(shí)出發(fā),向右運(yùn)動(dòng),點(diǎn)P的速度為2cm/s,點(diǎn)Q的速度為1cm/s.設(shè)運(yùn)動(dòng)時(shí)間為ts),當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),P,Q兩點(diǎn)停止運(yùn)動(dòng).求當(dāng)t為何值時(shí),2OP-OQ=4cm);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+3分別與x,y軸交于點(diǎn)N,M,與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)A,若AM:MN=2:3,則k=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面一段文字:

問(wèn)題:0.能用分?jǐn)?shù)表示嗎?

探求:步驟①設(shè)x=0.,

步驟②10x=10×0.

步驟③10x=8.,

步驟④10x=8+0.

步驟⑤10x=8+x,

步驟⑥9x=8

步驟⑦x=

根據(jù)你對(duì)這段文字的理解,回答下列問(wèn)題:

1)步驟①到步驟②的依據(jù)是______;

2)仿照上述探求過(guò)程,請(qǐng)你嘗試把0.表示成分?jǐn)?shù)的形式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,已知AB=AC,D、E、B、C在同一條直線(xiàn)上,且AB2=BDCE,求證:△ABD∽△ECA.

查看答案和解析>>

同步練習(xí)冊(cè)答案