【題目】如圖,直線1上有AB兩點(diǎn),AB=12cm,點(diǎn)O是線段AB上的一點(diǎn),OA=2OB

1OA=______cm,OB=______cm;

2)若點(diǎn)C是線段AB上一點(diǎn)(點(diǎn)C不與點(diǎn)AB重合),且滿足AC=CO+CB,求CO的長;

3)若動(dòng)點(diǎn)PQ分別從A,B同時(shí)出發(fā),向右運(yùn)動(dòng),點(diǎn)P的速度為2cm/s,點(diǎn)Q的速度為1cm/s.設(shè)運(yùn)動(dòng)時(shí)間為ts),當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),PQ兩點(diǎn)停止運(yùn)動(dòng).求當(dāng)t為何值時(shí),2OP-OQ=4cm);

【答案】184;(2CO的長是;(3)當(dāng)t1.6s8s時(shí),2OP-OQ=4

【解析】

1)由于AB=12cm,點(diǎn)O是線段AB上的一點(diǎn),OA=2OB,則OA+OB=3OB=AB=12cm,依此即可求解;

2)根據(jù)圖形可知,點(diǎn)C是線段AO上的一點(diǎn),可設(shè)C點(diǎn)所表示的實(shí)數(shù)為x,分兩種情況:①點(diǎn)C在線段OA上時(shí),則x0,②點(diǎn)C在線段OB上時(shí),則x0,根據(jù)AC=CO+CB,列出方程求解即可;

3)分0≤t4;4≤t12兩種情況討論求解即可.

解:(1)∵AB=12cmOA=2OB,

OA+OB=3OB=AB=12cm,解得OB=4cm

OA=2OB=8cm

故答案為:8,4

2)設(shè)O點(diǎn)表示的數(shù)是0,C點(diǎn)所表示的實(shí)數(shù)為x,

分兩種情況:①點(diǎn)C在線段OA上時(shí),則x0,

AC=CO+CB,

8+x=-x+4-x

3x=-4,

x=

②點(diǎn)C在線段OB上時(shí),則x0

AC=CO+CB,

8+x=4

x=-4(不符合題意,舍).

CO的長是

3)當(dāng)0≤t4時(shí),依題意有

28-2t-4+t=4

解得t=1.6;

當(dāng)4≤t≤12時(shí),依題意有

22t-8-4+t=4,

解得t=8

故當(dāng)t1.6s8s時(shí),2OP-OQ=4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣5,1),B(﹣22),C(﹣1,4),請(qǐng)按下列要求畫圖:

1)將△ABC先向右平移4個(gè)單位長度、再向下平移1個(gè)單位長度,得到△A1B1C1,畫出△A1B1C1

2)畫出與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A2B2C2,并直接寫出點(diǎn)A2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一次函數(shù)的圖象與軸交點(diǎn)坐標(biāo)為,如圖所示.則下列說法:①的增大而減小;②關(guān)于的方程的解為;③的解是;④.其中正確的說法有_____.(只填你認(rèn)為正確說法的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E、F分別是CD、BC上的點(diǎn).若∠AEF=90°,則一定有( )

A.△ADE∽△ECF
B.△BCF∽△AEF
C.△ADE∽△AEF
D.△AEF∽△ABF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在ABC中,∠ACB=90°,點(diǎn)P是線段AC上一點(diǎn),過點(diǎn)AAB的垂線,交BP的延長線于點(diǎn)M,MNAC于點(diǎn)N,PQAB于點(diǎn)Q,AQ=MN 求證:

1APM是等腰三角形;

2PC=AN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,對(duì)角線ACBD交于點(diǎn)O,下列各組條件,其中不能判定四邊形ABCD是平行四邊形的是( 。

A. OAOC,OBODB. OAOCABCD

C. ABCD,OAOCD. ADB=∠CBD,∠BAD=∠BCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線軸交于兩點(diǎn),與軸交于點(diǎn).

1)求此拋物線的解析式;

2)設(shè)是線段上的動(dòng)點(diǎn),作,連接,當(dāng)的面積是面積的2倍時(shí),求點(diǎn)的坐標(biāo);

3)若為拋物線上、兩點(diǎn)間的一個(gè)動(dòng)點(diǎn),過軸的平行線,交,當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),線段的值最大,并求此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=8cm,BC=16cm,點(diǎn)P從點(diǎn)A出發(fā)沿AB邊想向點(diǎn)B以2cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B出發(fā)沿BC邊向點(diǎn)C以4cm/s的速度移動(dòng),如果P、Q同時(shí)出發(fā),經(jīng)過幾秒后△PBQ和△ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰△ABC中,頂角∠A=36°,BD為∠ABC的平分線,求證:點(diǎn)D是AC的黃金分割點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案