【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(02),點(diǎn)Pt,0)在x軸上,B是線(xiàn)段PA的中點(diǎn).將線(xiàn)段PB繞著點(diǎn)P順時(shí)針?lè)较蛐D(zhuǎn)90°,得到線(xiàn)段PC,連結(jié)OB、BC

1)判斷△PBC的形狀,并簡(jiǎn)要說(shuō)明理由;

2)當(dāng)t0時(shí),試問(wèn):以PO、B、C為頂點(diǎn)的四邊形能否為平行四邊形?若能,求出相應(yīng)的t的值?若不能,請(qǐng)說(shuō)明理由;

3)當(dāng)t為何值時(shí),△AOP△APC相似?

【答案】(1)等腰直角三角形(2t=23±1±4

【解析】試題分析:(1)根據(jù)旋轉(zhuǎn)的現(xiàn)在得出PB=PC,再根據(jù)B是線(xiàn)段PA的中點(diǎn),得出∠BPC=90°,從而得出△PBC是等腰直角三角形.

2)根據(jù)OBP=BPC=90°,得出OBPC,再根據(jù)BPA的中點(diǎn),得出四邊形POBC是平行四邊形,當(dāng)OBBP時(shí),得出OP2=2OB2,即t2=2t2+1),求出符合題意的t的值,即可得出答案;

3)根據(jù)題意得出∠AOP=∠APC=90°,再分兩種情況討論,當(dāng)時(shí)和時(shí),得出△AOP∽△APC△AOP∽△CPA,分別求出t的值即可.

試題解析:(1△PBC是等腰直角三角形,理由如下:

線(xiàn)段PB繞著點(diǎn)P順時(shí)針?lè)较蛐D(zhuǎn)90°,得到線(xiàn)段PC

∴PB=PC,

∵B是線(xiàn)段PA的中點(diǎn),

∴∠BPC=90°

∴△PBC是等腰直角三角形.

2)當(dāng)OB⊥BP時(shí),以P、O、BC為頂點(diǎn)的四邊形為平行四邊形.

∵∠OBP=∠BPC=90°,

∴OB∥PC,

∵BPA的中點(diǎn),

OB=AP=BP=PC,

四邊形POBC是平行四邊形,

當(dāng)OBBP時(shí),有OP=OB,即OP2=2OB2,

t2=2t2+1),

∴t1=2,t2=﹣2(不合題意),

當(dāng)t=2時(shí),以P、O、BC為頂點(diǎn)的四邊形為平行四邊形.

3)由題意可知,∠AOP=∠APC=90°,

當(dāng)時(shí),

△AOP∽△APC,

此時(shí)OP=OA=1,

∴t=±1

當(dāng)時(shí),

△AOP∽△CPA,

此時(shí)OP=2OA=4,

∴t=±4

當(dāng)t=±1±4時(shí),△AOP△CPA相似.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次學(xué)生夏令營(yíng)活動(dòng),有小學(xué)生、初中生、高中生和大學(xué)生參加,共200人,各類(lèi)學(xué)生人數(shù)比例見(jiàn)扇形統(tǒng)計(jì)圖.

(1)參加這次夏令營(yíng)活動(dòng)的初中生共有多少人?

(2)活動(dòng)組織者號(hào)召參加這次夏令營(yíng)活動(dòng)的所有學(xué)生為貧困學(xué)生捐款.結(jié)果小學(xué)生每人

捐款 5 元,初中生每人捐款 10 元,高中生每人捐款 15 元,大學(xué)生每人捐款 20 元.問(wèn)平均 每人捐款是多少元?

(3)在(2)的條件下,把每個(gè)學(xué)生的捐款數(shù)額(以元為單位)——記錄下來(lái),則在這組數(shù)據(jù)中,眾數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】比較大。2750________8140(填“>”“<”或“=”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角三角形紙片的兩直角邊長(zhǎng)分別為6、8,按如圖那樣折疊,使點(diǎn)A與點(diǎn)B重合,折痕為DE,則SBCE:SBDE等于(

A.2:5 B.14:25 C.16:25 D.4:21

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把下列各式分解因式:

(1)a2(x-y)+4b2(y-x);

(2)x2-y2-z2-2yz.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,梯形ABCD中,ABCD,點(diǎn)F在BC上,連DF與AB的延長(zhǎng)線(xiàn)交于點(diǎn)G.

(1)求證:CDF∽△BGF;

(2)當(dāng)點(diǎn)F是BC的中點(diǎn)時(shí),過(guò)F作EFCD交AD于點(diǎn)E,若AB=6cm,EF=4cm,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各數(shù):0,32,(-5)2,-4,-|-16|,π,其中有平方根的個(gè)數(shù)是(  )

A. 3個(gè) B. 4個(gè) C. 5個(gè) D. 6個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在方格紙中

1)請(qǐng)?jiān)诜礁窦埳辖⑵矫嬷苯亲鴺?biāo)系,使,并求出點(diǎn)坐標(biāo);

2)以原點(diǎn)為位似中心,相似比為2,在第一象限內(nèi)將放大,畫(huà)出放大后的圖形;

3)計(jì)算的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過(guò)網(wǎng)格點(diǎn)A、B、C,請(qǐng)?jiān)诰W(wǎng)格中進(jìn)行下列操作:(1)在圖中確定該圓弧所在圓的圓心D點(diǎn)的位置,并寫(xiě)出點(diǎn)D點(diǎn)坐標(biāo)為

(2)連接AD、CD,求D的半徑及弧的長(zhǎng).

(3)有一點(diǎn)E(6,0),判斷點(diǎn)E與D的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案