【題目】如圖,梯形ABCD中,AB∥CD,點F在BC上,連DF與AB的延長線交于點G.
(1)求證:△CDF∽△BGF;
(2)當(dāng)點F是BC的中點時,過F作EF∥CD交AD于點E,若AB=6cm,EF=4cm,求CD的長.
【答案】(1)證明見解析(2)CD=2cm
【解析】
試題分析:(1)利用平行線的性質(zhì)可證明△CDF∽△BGF.
(2)根據(jù)點F是BC的中點這一已知條件,可得△CDF≌△BGF,則CD=BG,只要求出BG的長即可解題.
試題解析:(1)∵梯形ABCD,AB∥CD,
∴∠CDF=∠G,∠DCF=∠GBF,
∴△CDF∽△BGF.
(2)由(1)△CDF∽△BGF,
又∵F是BC的中點,BF=FC,
∴△CDF≌△BGF,
∴DF=GF,CD=BG,
∵AB∥DC∥EF,F(xiàn)為BC中點,
∴E為AD中點,
∴EF是△DAG的中位線,
∴2EF=AG=AB+BG.
∴BG=2EF﹣AB=2×4﹣6=2,
∴CD=BG=2cm.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的角平分線AD、中線BE相交于點O,則①AO是△ABE的角平分線;②BO是△ABD的中線;③DE是△ADC的中線;④ED是△EBC的角平分線的結(jié)論中正確的有_________個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校有一個長為25m,寬為12m的長方體游泳池,當(dāng)前水位是0.1m. 現(xiàn)往游泳池注水,水位每小時上升0.3m.
(1) 寫出游泳池水深d(m)與注水時間x(h)的函數(shù)表達(dá)式;
(2) 如果x(h)共注水y(m3),求y與x的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(0,2),點P(t,0)在x軸上,B是線段PA的中點.將線段PB繞著點P順時針方向旋轉(zhuǎn)90°,得到線段PC,連結(jié)OB、BC.
(1)判斷△PBC的形狀,并簡要說明理由;
(2)當(dāng)t>0時,試問:以P、O、B、C為頂點的四邊形能否為平行四邊形?若能,求出相應(yīng)的t的值?若不能,請說明理由;
(3)當(dāng)t為何值時,△AOP與△APC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是某村一遍若干畝土地的示意圖,在黨的“十六大”精神的指導(dǎo)下,為進一步加大農(nóng)村經(jīng)濟結(jié)構(gòu)調(diào)整的力度,某村決定把這塊土地平均分給四位“花農(nóng)”種植,請你幫他們分一分,提供兩種分法.要求:畫出圖形,并簡要說明分法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某文具店,一支鉛筆的售價為1.2元,一支圓珠筆的售價為2元,該店在新年之際舉行文具優(yōu)惠銷售活動,鉛筆按原價打8折出售,圓珠筆按原價打9折出售,結(jié)果兩種筆共賣出60支,賣得金額87元.設(shè)該鉛筆賣出x支,則可得的一元一次方程為( )
A.0.8×1.2x+0.9×2(60﹣x)=87
B.0.8×1.2x+0.9×2(60+x)=87
C.0.9×2x+0.8×1.2(60+x)=87
D.0.9×2x+0.8×1.2(60﹣x)=87
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了防控冬季呼吸道疾病,我校積極進行校園環(huán)境消毒工作,購買了甲、乙兩種消毒液共100瓶,其中甲種每瓶6元,乙種每瓶9元,如果購買這兩種消毒液共花去780元,求甲、乙兩種消毒液各購買了多少瓶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程3x+6=x-7時,移項正確的是( )
A. 3x+x=6-7 B. 3x-x=6-7 C. 3x-x=-7-6 D. 3x-x=7-6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com