【題目】如圖,拋物線y=ax2+2ax+c的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊)AB=4,與y軸交于點(diǎn)C,OC=OA,點(diǎn)D為拋物線的頂點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)M(m,0)為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過點(diǎn)Q作QN⊥x軸于點(diǎn)N,可得矩形PQNM,如圖1,點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQNM的周長最大時,求m的值,并求出此時的△AEM的面積;
(3)已知H(0,﹣1),點(diǎn)G在拋物線上,連HG,直線HG⊥CF,垂足為F,若BF=BC,求點(diǎn)G的坐標(biāo).

【答案】
(1)解:由拋物線y=ax2+2ax+c,可得C(0,c),對稱軸為x=﹣ =﹣1,

∵OC=OA,

∴A(﹣c,0),B(﹣2+c,0),

∵AB=4,

∴﹣2+c﹣(﹣c)=4,

∴c=3,

∴A(﹣3,0),

代入拋物線y=ax2+2ax+3,得

0=9a﹣6a+3,

解得a=﹣1,

∴拋物線的解析式為y=﹣x2﹣2x+3


(2)解:如圖1,∵M(jìn)(m,0),PM⊥x軸,

∴P(m,﹣m2﹣2m+3),

又∵對稱軸為x=﹣1,PQ∥AB,

∴Q(﹣2﹣m,﹣m2﹣2m+3),

又∵QN⊥x軸,

∴矩形PQNM的周長

=2(PM+PQ)

=2[(﹣m2﹣2m+3)+(﹣2﹣m﹣m)]

=2(﹣m2﹣4m+1)

=﹣2(m+2)2+10,

∴當(dāng)m=﹣2時,矩形PQNM的周長有最大值10,

此時,M(﹣2,0),

由A(﹣3,0),C(0,3),可得

直線AC為y=x+3,AM=1,

∴當(dāng)x=﹣2時,y=1,即E(﹣2,1),ME=1,

∴△AEM的面積= ×AM×ME= ×1×1=


(3)解:如圖2,連接CB并延長,交直線HG與Q,

∵HG⊥CF,BC=BF,

∴∠BFC+∠BFQ=∠BCF+∠Q=90°,∠BFC=∠BCF,

∴∠BFQ=∠Q,

∴BC=BF=BQ,

又∵C(0,3),B(1,0),

∴Q(2,﹣3),

又∵H(0,﹣1),

∴QH的解析式為y=﹣x﹣1,

解方程組 ,可得

,

∴點(diǎn)G的坐標(biāo)為( , )或( , ).


【解析】(1)根據(jù)拋物線y=ax2+2ax+c,可得C(0,c),對稱軸為x﹣1,再根據(jù)OC=OA,AB=4,可得A(﹣3,0),最后代入拋物線y=ax2+2ax+3,得拋物線的解析式為y=﹣x2﹣2x+3;(2)根據(jù)點(diǎn)M(m,0),可得矩形PQNM中,P(m,﹣m2﹣2m+3),Q(﹣2﹣m,﹣m2﹣2m+3),再根據(jù)矩形PQNM的周長=2(PM+PQ)=﹣2(m+2)2+10,可得當(dāng)m=﹣2時,矩形PQNM的周長有最大值10,M的坐標(biāo)為(﹣2,0),最后由直線AC為y=x+3,AM=1,求得E(﹣2,1),ME=1,據(jù)此求得△AEM的面積;(3)連接CB并延長,交直線HG與Q,根據(jù)已知條件證明BC=BF=BQ,再根據(jù)C(0,3),B(1,0),得出Q(2,﹣3),根據(jù)H(0,﹣1),求得QH的解析式為y=﹣x﹣1,最后解方程組 ,可得點(diǎn)G的坐標(biāo).
【考點(diǎn)精析】本題主要考查了二次函數(shù)的最值和矩形的性質(zhì)的相關(guān)知識點(diǎn),需要掌握如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得最大值(或最小值),即當(dāng)x=-b/2a時,y最值=(4ac-b2)/4a;矩形的四個角都是直角,矩形的對角線相等才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若我們規(guī)定三角“”表示為:abc;方框“”表示為:(xm+yn).例如:=1×19×3÷(24+31)=3.請根據(jù)這個規(guī)定解答下列問題:

(1)計算:= ______ ;

(2)代數(shù)式為完全平方式,則k= ______ ;

(3)解方程:=6x2+7.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)Ax軸負(fù)半軸上,點(diǎn)B、C分別在x軸、y軸正半軸上,且OB=2OA,OBOC=OCOA=2.

(1)求點(diǎn)C的坐標(biāo);

(2)點(diǎn)P從點(diǎn)A出發(fā)以每秒1個單位的速度沿AB向點(diǎn)B勻速運(yùn)動,同時點(diǎn)Q從點(diǎn)B出發(fā)以每秒3個單位的速度沿BA向終點(diǎn)A勻速運(yùn)動,當(dāng)點(diǎn)Q到達(dá)終點(diǎn)A時,點(diǎn)P、Q均停止運(yùn)動,設(shè)點(diǎn)P運(yùn)動的時間為t(t>0)秒,線段PQ的長度為y,用含t的式子表示y,并寫出相應(yīng)的t的范圍;

(3)在(2)的條件下,過點(diǎn)P作x軸的垂線PM,PM=PQ,是否存在t值使點(diǎn)O為PQ中點(diǎn)? 若存在求t值并求出此時△CMQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在甲、乙兩名同學(xué)中選拔一人參加中華好詩詞大賽,在相同的測試條件下,兩人5次測試成績(單位:分)如下:

甲:79,86,82,85,83

乙:88,79,90,81,72.

回答下列問題:

(1)甲成績的平均數(shù)是______ ,乙成績的平均數(shù)是______ ;

(2)經(jīng)計算知S2=6,S2=42.你認(rèn)為選拔誰參加比賽更合適,說明理由;

(3)如果從甲、乙兩人5次的成績中各隨機(jī)抽取一次成績進(jìn)行分析,求抽到的兩個人的成績都大于80分的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中錯誤的是( )

A. ABC中,∠C=A-B,則ABC為直角三角形

B. ABC中,若∠A∶∠B∶∠C=523,則ABC為直角三角形

C. ABC中,若a=c,b=c,則ABC為直角三角形

D. ABC中,若abc=224,則ABC為直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是邊長為1的正方形,OC與x軸正半軸的夾角為15°,點(diǎn)B在拋物線y=ax2(a<0)的圖象上,則a的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從長度分別為3,5,6,9的四條線段中任取三條,能組成三角形的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在長方形中,cm,cm.現(xiàn)將其按下列步驟折疊:(1)將邊向邊折疊,使邊落在邊上,得到折痕,如圖②;(2)沿折疊,交于點(diǎn),如圖③.則所得梯形的周長等于( )

A. cm B. cm

C. cm D. cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,連接AE,CD,AECD交于點(diǎn)M,AEBC交于點(diǎn)N.

(1)求證:AE=CD;

(2)求證:AE⊥CD;

(3)連接BM,有以下兩個結(jié)論:①BM平分∠CBE;②MB平分∠AMD.其中正確的有   (請寫序號,少選、錯選均不得分).

查看答案和解析>>

同步練習(xí)冊答案