【題目】如圖,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,連接AE,CD,AECD交于點(diǎn)M,AEBC交于點(diǎn)N.

(1)求證:AE=CD;

(2)求證:AE⊥CD;

(3)連接BM,有以下兩個(gè)結(jié)論:①BM平分∠CBE;②MB平分∠AMD.其中正確的有   (請(qǐng)寫序號(hào),少選、錯(cuò)選均不得分).

【答案】(1)證明見解析;(2)證明見解析;(3)②.

【解析】

(1)欲證明AE=CD,只要證明ABE≌△CBD;

(2)由ABE≌△CBD,推出BAE=BCD,由∠NMC=180°-BCD-CNM,ABC=180°-BAE-ANB,又∠CNM=ABC,ABC=90°,可得∠NMC=90°;

(3)結(jié)論:②;作BKAEK,BJCDJ.理由角平分線的判定定理證明即可.

(1)證明:∵∠ABC=DBE,

∴∠ABC+CBE=DBE+CBE,

即∠ABE=CBD,

ABECBD中,

,

∴△ABE≌△CBD,

AE=CD.

(2)∵△ABE≌△CBD,

∴∠BAE=BCD,

∵∠NMC=180°-BCD-CNM,ABC=180°-BAE-ANB,

又∠CNM=ABC,

∵∠ABC=90°,

∴∠NMC=90°

AECD.

(3)結(jié)論:②

理由:作BKAEK,BJCDJ.

∵△ABE≌△CBD,

AE=CD,SABE=SCDB,

AEBK=CDBJ,

BK=BJ,∵作BKAEK,BJCDJ,

BM平分∠AMD.

不妨設(shè)①成立,則ABM≌△DBM,則AB=BD,顯然可不能,故①錯(cuò)誤.

故答案為②

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+2ax+c的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊)AB=4,與y軸交于點(diǎn)C,OC=OA,點(diǎn)D為拋物線的頂點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)M(m,0)為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過點(diǎn)Q作QN⊥x軸于點(diǎn)N,可得矩形PQNM,如圖1,點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQNM的周長(zhǎng)最大時(shí),求m的值,并求出此時(shí)的△AEM的面積;
(3)已知H(0,﹣1),點(diǎn)G在拋物線上,連HG,直線HG⊥CF,垂足為F,若BF=BC,求點(diǎn)G的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,以長(zhǎng)為一邊作,取中點(diǎn),連、、

求證:

當(dāng)________時(shí),是等邊三角形,并說明理由.

當(dāng)時(shí),若,取中點(diǎn),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,是邊的中點(diǎn),以為腰向外作等腰直角三角形,,連接,交于點(diǎn),交于點(diǎn),連接.

(1),則 ;

(2)求證: ;

(3),則 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長(zhǎng)為6的正三角形紙片按如下順序進(jìn)行兩次折疊,展開后,得折痕(如圖①),為其交點(diǎn).

(1)探求的數(shù)量關(guān)系,并說明理由;

(2)如圖②,若分別為上的動(dòng)點(diǎn).

①當(dāng)的長(zhǎng)度取得最小值時(shí),求的長(zhǎng)度;

②如圖③,若點(diǎn)在線段上,,則的最小值為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個(gè)小格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),△ABC和△DEF的頂點(diǎn)都在格點(diǎn)上,結(jié)合所給的平面直角坐標(biāo)系解答下列問題:
(1)畫出△ABC向上平移4個(gè)單位長(zhǎng)度后所得到的△A1B1C1
(2)畫出△DEF繞點(diǎn)F按順時(shí)針方向旋轉(zhuǎn)90°后所得到的△D1E1F1
(3)求點(diǎn)D在旋轉(zhuǎn)過程中劃過的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+4x+5與x軸的兩個(gè)交點(diǎn)為A、B,與y軸交于點(diǎn)C.

(1)求A,B,C三點(diǎn)的坐標(biāo)?
(2)求該二次函數(shù)的對(duì)稱軸和頂點(diǎn)坐標(biāo)?
(3)若坐標(biāo)平面內(nèi)的點(diǎn)M,使得以點(diǎn)M和三點(diǎn)A,B,C為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)M的坐標(biāo)?(直接寫出M的坐標(biāo))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=AD,那么添加下列一個(gè)條件后,仍無(wú)法判定ABC≌△ADC的是( 。

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣2的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(4,0),且當(dāng)x=﹣2和x=5時(shí)二次函數(shù)的函數(shù)值y相等.

(1)求實(shí)數(shù)a、b的值;
(2)如圖1,動(dòng)點(diǎn)E、F同時(shí)從A點(diǎn)出發(fā),其中點(diǎn)E以每秒2個(gè)單位長(zhǎng)度的速度沿AB邊向終點(diǎn)B運(yùn)動(dòng),點(diǎn)F以每秒 個(gè)單位長(zhǎng)度的速度沿射線AC方向運(yùn)動(dòng).當(dāng)點(diǎn)E停止運(yùn)動(dòng)時(shí),點(diǎn)F隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.連接EF,將△AEF沿EF翻折,使點(diǎn)A落在點(diǎn)D處,得到△DEF.
①是否存在某一時(shí)刻t,使得△DCF為直角三角形?若存在,求出t的值;若不存在,請(qǐng)說明理由.
②設(shè)△DEF與△ABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;

查看答案和解析>>

同步練習(xí)冊(cè)答案