【題目】如圖,將邊長為6的正三角形紙片按如下順序進行兩次折疊,展開后,得折痕(如圖①),為其交點.

(1)探求的數(shù)量關系,并說明理由;

(2)如圖②,若分別為上的動點.

①當的長度取得最小值時,求的長度;

②如圖③,若點在線段上,,則的最小值為 .

【答案】 (1) (2) ① ; ②.

【解析】

(1)根據(jù)等邊三角形的性質(zhì)得到∠BAO=ABO=OBD=30°,得到AO=OB,根據(jù)直角三角形的性質(zhì)即可得到結論;
(2)如圖②,作點D關于BE的對稱點D',D'D′NBCNBEP,則此時PN+PD的長度取得最小值,根據(jù)線段垂直平分線的想知道的BD=BD′,推出BDD′是等邊三角形,得到BN=BD=,于是得到結論;
(3)如圖③,Q關于BC的對稱點Q',D關于BE的對稱點D',連接Q′D′,即為QN+NP+PD的最小值.根據(jù)軸對稱的定義得到∠Q′BN=QBN=30°,QBQ′=60°,得到BQQ′為等邊三角形,BDD′為等邊三角形,解直角三角形即可得到結論.

(1)AO=2OD.

理由:∵△ABC是等邊三角形,

∴∠BAO=ABO=OBD=30°

AO=OB,

BD=CD,

ADBC,

∴∠BDO=90°,

OB=2OD,

AO=2OD.

(2)①如圖,作點D關于BE的對稱點D′,過D′D′NBCNBEP,則此時PN+PD的長度取得最小值,

BE垂直平分DD′,

BD=BD′,

∵∠ABC=60°,

∴△BDD′是等邊三角形,

BN=BD=

∵∠PBN=30°,

PB=.

②如圖,作Q關于BC的對稱點Q′,作D關于BE的對稱點D′,連接Q′D′,即為QN+NP+PD的值最小值,

根據(jù)軸對稱的定義可知:∠Q′BN=QBN=30°,QBQ′=60°,

∴△BQQ′為等邊三角形,BDD′為等邊三角形,

∴∠D′BQ′=90°,

∴在RtD′BQ′中,

D′Q′= ,

QN+NP+PD的最小值= .

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中錯誤的是( )

A. ABC中,∠C=A-B,則ABC為直角三角形

B. ABC中,若∠A∶∠B∶∠C=523,則ABC為直角三角形

C. ABC中,若a=c,b=c,則ABC為直角三角形

D. ABC中,若abc=224,則ABC為直角三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,平面直角坐標系中,△ABC的邊AB在x軸上,∠C=60°,AC交y軸于點E,AC,BC的長是方程x2﹣16x+64=0的兩個根且OA:OB=1:3,請解答下列問題:

(1)求點C的坐標;
(2)求直線EB的解析式;
(3)在x軸上是否存在點P,使△BEP為等腰三角形?若存在,請直接寫出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形的對稱軸上找點,使得,均為等腰三角形,則滿足條件的點_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.點P在線段AB上以1cm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動.它們運動的時間為t(s).

(1)若點Q的運動速度與點P的運動速度相等,當t=1時,△ACP與△BPQ是否全等,請說明理由,并判斷此時線段PC和線段PQ的位置關系;

(2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB=∠DBA=60°”,其他條件不變.設點Q的運動速度為x cm/s,是否存在實數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應的x、t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,連接AE,CD,AECD交于點M,AEBC交于點N.

(1)求證:AE=CD;

(2)求證:AE⊥CD;

(3)連接BM,有以下兩個結論:①BM平分∠CBE;②MB平分∠AMD.其中正確的有   (請寫序號,少選、錯選均不得分).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.

(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=x+1x、y 軸分別交于點A、B,在直線 AB上截取BB1=AB,過點B1分別作x、y 軸的垂線,垂足分別為點A1C1,得到矩形OA1B1C1;在直線 AB上截取B1B2= BB1,過點B2分別作x、y 軸的垂線,垂足分別為點A2 、C2,得到矩形OA2B2C2在直線AB上截取B2B3= B1B2,過點B3分別作x、y 軸的垂線,垂足分別為點A3、C3得到矩形OA3B3C3;……;

則點B1的坐標是 ;第3個矩形OA3B3C3的面積是

n個矩形OAnBnCn的面積是 (用含n的式子表示,n是正整數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次軍事演習中,藍方在﹣條東西走向的公路上的A處朝正南方向撤退,紅方在公路上的B處沿南偏西60°方向前進實施攔截.紅方行駛2000米到達C后,因前方無法通行,紅方?jīng)Q定調(diào)整方向,再朝南偏西45°方向前進了相同距離,剛好在D處成功攔截藍方.

(1)求點C到公路的距離;
(2)求紅藍雙方最初的距離.(結果保留根號)

查看答案和解析>>

同步練習冊答案