【題目】王師傅有一根長(zhǎng)45米的鋼材,他想將它鋸斷后焊成三個(gè)面積分別為2平方米、18平方米、32平方米的正方形鐵框,問(wèn)王師傅的鋼材夠用嗎?請(qǐng)通過(guò)計(jì)算說(shuō)明理由.

【答案】不夠用

【解析】試題分析:根據(jù)正方形的面積公式求出各邊的長(zhǎng),再根據(jù)每個(gè)正方形有4條邊,從而求出每個(gè)正方形所耗費(fèi)的鋼材,再把三個(gè)耗費(fèi)的鋼材加起來(lái),和45米進(jìn)行比較即可.

試題解析:不夠用,理由如下:

∵正方形的面積是2m2,

∴它的邊長(zhǎng)是,

∴所耗費(fèi)的鋼材是4×=4m),

∵正方形的面積是18m2,

∴它的邊長(zhǎng)是3,

∴所耗費(fèi)的鋼材是4×3=12m),

∵正方形的面積是32m2,

∴它的邊長(zhǎng)是4,

∴所耗費(fèi)的鋼材是4×4=16m),

∴所耗費(fèi)的鋼材的總長(zhǎng)度是4+12+16=32m),

32≈55.455.445,

∴王師傅的鋼材不夠用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】8分)如圖,平行四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,若E、FAC上兩動(dòng)點(diǎn),分別從A、C兩點(diǎn)以相同的速度1cm/sCA運(yùn)動(dòng).

1)四邊形DEBF是平行四邊形嗎?請(qǐng)說(shuō)明理由;

2)若BD=12cmAC=16cm,當(dāng)運(yùn)動(dòng)時(shí)間t為何值時(shí),四邊形DEBF是矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,并回答問(wèn)題. 事實(shí)上,在任何一個(gè)直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方,這個(gè)結(jié)論就是著名的勾股定理.請(qǐng)利用這個(gè)結(jié)論,完成下面活動(dòng):

(1)一個(gè)直角三角形的兩條直角邊分別為6、8,那么這個(gè)直角三角形斜邊長(zhǎng)為   

(2)如圖1,ADBC 于D,AD=BD,AC=BE,AC=3,DC=1,求BD的長(zhǎng)度.

(3)如圖2,點(diǎn)A在數(shù)軸上表示的數(shù)是   ,請(qǐng)用類(lèi)似的方法在圖2數(shù)軸上畫(huà)出表示數(shù)的B點(diǎn)(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的二次函數(shù)y=ax2+bx+c的圖象中,劉星同學(xué)觀察得出了下面四條信息:
①b2﹣4ac>0;②c>1;③2a﹣b<0;④a+b+c<0.你認(rèn)為其中錯(cuò)誤的有(

A.2個(gè)
B.3個(gè)
C.4個(gè)
D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分7分)在一棵樹(shù)的10米高處有兩只猴子,一只猴子爬下樹(shù)走到離樹(shù)20米處的池塘的A處。另一只爬到樹(shù)頂D后直接躍到A處,距離以直線計(jì)算,如果兩只猴子所經(jīng)過(guò)的距離相等,求這棵樹(shù)高。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫(xiě)成另一個(gè)式子的平方,如3+2=(1+)2,善于思考的小明進(jìn)行了以下探索:

設(shè)a+b=(m+n)2(其中a、b、m、n均為正整數(shù)),則有a+b=m2+2n2+2mn

∴a=m2+2n2,b=2mn.這樣小明就找到了一種把a(bǔ)+b的式子化為平方式的方法.

請(qǐng)你仿照小明的方法探索并解決下列問(wèn)題:

(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b=(m+n)2,用含m、n的式子分別表示a、b,得:a= , b= .

(2)利用所探索的結(jié)論,找一組正整數(shù)a、b、m、n填空: + = ( + )2;(答案不唯一)

(3)若a+4=(m+n)2 ,且a、m、n均為正整數(shù),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在四邊形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,點(diǎn)E、F分別在線段BC、CD上,∠EAF=30°,連接EF.

(1)如圖2,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后得到△A′B′E′(A′B′與AD重合),那么
①∠E′AF度數(shù)②線段BE、EF、FD之間的數(shù)量關(guān)系
(2)如圖3,當(dāng)點(diǎn)E、F分別在線段BC、CD的延長(zhǎng)線上時(shí),其他條件不變,請(qǐng)?zhí)骄烤段BE、EF、FD之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某文具店購(gòu)進(jìn)一批紀(jì)念冊(cè),每本進(jìn)價(jià)為20元,出于營(yíng)銷(xiāo)考慮,要求每本紀(jì)念冊(cè)的售價(jià)不低于20元且不高于28元,在銷(xiāo)售過(guò)程中發(fā)現(xiàn)該紀(jì)念冊(cè)每周的銷(xiāo)售量y(本)與每本紀(jì)念冊(cè)的售價(jià)x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷(xiāo)售單價(jià)為22元時(shí),銷(xiāo)售量為36本;當(dāng)銷(xiāo)售單價(jià)為24元時(shí),銷(xiāo)售量為32本.
(1)請(qǐng)直接寫(xiě)出y與x的函數(shù)關(guān)系式;
(2)當(dāng)文具店每周銷(xiāo)售這種紀(jì)念冊(cè)獲得150元的利潤(rùn)時(shí),每本紀(jì)念冊(cè)的銷(xiāo)售單價(jià)是多少元?
(3)設(shè)該文具店每周銷(xiāo)售這種紀(jì)念冊(cè)所獲得的利潤(rùn)為w元,將該紀(jì)念冊(cè)銷(xiāo)售單價(jià)定為多少元時(shí),才能使文具店銷(xiāo)售該紀(jì)念冊(cè)所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的三個(gè)頂點(diǎn)的坐標(biāo)分別為O(00),A(50),B(24)

(1)OAB的面積;

(2)OA兩點(diǎn)的位置不變,P點(diǎn)在什么位置時(shí),OAP的面積是OAB面積的2倍?

(3)B(2,4)O(0,0)不變,M點(diǎn)在x軸上,M點(diǎn)在什么位置時(shí),OBM的面積是OAB面積的2倍?

查看答案和解析>>

同步練習(xí)冊(cè)答案