【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對稱軸是直線x=1,
①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x>3;④若(﹣2,y1),(5,y2)是拋物線上的兩點(diǎn),則y1<y2 .
上述判斷中,正確的是 .
【答案】①④
【解析】解:∵拋物線與x軸有2個(gè)交點(diǎn),
∴b2﹣4ac>0,即b2>4ac,所以①正確;
∵拋物線的對稱軸是直線x=1,但不能確定拋物線與x軸的交點(diǎn)坐標(biāo),
∴4a﹣2b+c<0不確定;不等式ax2+bx+c>0的解集x>3錯(cuò)誤,所以②③錯(cuò)誤;
∵點(diǎn)(﹣2,y1)比點(diǎn)(5,y2)到直線x=1的距離小,
而拋物線開口向上,
∴y1<y2,所以④正確.
所以答案是:①④.
【考點(diǎn)精析】通過靈活運(yùn)用二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系,掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c)即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)的頂點(diǎn)的坐標(biāo)為,的坐標(biāo)為.
(1)請?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;
(2)將向右平移5個(gè)單位長度,向下平移2個(gè)單位長度,面出平移后的圖形;
(3)計(jì)算的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某校女子田徑隊(duì)23人年齡的平均數(shù)和中位數(shù)都是13歲,但是后來發(fā)現(xiàn)其中一位同學(xué)的年齡登記錯(cuò)誤,將14歲寫成15歲,經(jīng)重新計(jì)算后,正確的平均數(shù)為a歲,中位數(shù)為b歲,則下列結(jié)論中正確的是( )
A.a<13,b=13
B.a<13,b<13
C.a>13,b<13
D.a>13,b=13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
問題背景
在綜合實(shí)踐課上,老師讓同學(xué)們根據(jù)如下問題情境,寫出兩個(gè)教學(xué)結(jié)論:
如圖,點(diǎn)C在線段BD上,點(diǎn)E在線段AC上.∠ACB=∠ACD=90°,AC=BC;DC=CE,M,N分別是線段BE,AD上的點(diǎn).
“興趣小組”寫出的兩個(gè)教學(xué)結(jié)論是:①△BCE≌△ACD;②當(dāng)CM,CN分別是△BCE和△ACD的中線時(shí),△MCN是等腰直角三角形.
解決問題
(1)請你結(jié)合圖(1).證明“興趣小組”所寫的兩個(gè)結(jié)論的正確性.
類比探究
受到“興趣小組”的啟發(fā),“實(shí)踐小組”的同學(xué)們寫出如下結(jié)論:如圖(2),當(dāng)∠BCM=∠ACN時(shí),△MCN是等腰直角三角形.
(2)“實(shí)踐小組”所寫的結(jié)論是否正確?請說明理由.
感悟發(fā)現(xiàn)
“奮進(jìn)小組”認(rèn)為:當(dāng)點(diǎn)M,N分別是BE,AD的三等分點(diǎn)時(shí),△MCN仍然是等腰直角三角形請你思考:
(3)“奮進(jìn)小組”所提結(jié)論是否正確?答: (填“正確”、“不正確”或“不一定正確”.)
(4)反思上面的探究過程,請你添加適當(dāng)?shù)臈l作,再寫出使得△MCN是等腰直角三角形的數(shù)學(xué)結(jié)論.(所寫結(jié)論必須正確,寫出1個(gè)即可,不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將等腰直角三角形ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)15°后得到△AB′C′,若AC=1,則圖中陰影部分的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3,點(diǎn)0是對角線AC,BD的交點(diǎn),點(diǎn)E在CD上,且DE=2CE,連接BE.過點(diǎn)C作CF⊥BE,垂足為F,連接OF,則OF的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=BC,BE⊥AC于點(diǎn)E,AD⊥BC于點(diǎn)D,∠BAD=45°,AD與BE交于點(diǎn)F.
(1)求證:△ADC≌△BDF;
(2)求證:BF=2AE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓柱底面半徑為cm,高為9cm,點(diǎn)A、B分別是圓柱兩底面圓周上的點(diǎn),且A、B在同一母線上,用一根棉線從A點(diǎn)順著圓柱側(cè)面繞3圈到B點(diǎn),則這根棉線的長度最短為( )
A. 12cm B. cm C. 15cm D. cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.
理由如下:∵AD⊥BC于D,EG⊥BC于G,(_______)
∴∠ADC=∠EGC=90°,(垂直的定義),
∴AD∥EG,(_______)
∴∠1=∠2,(_______)
∠E=∠3,(_______)
又∵∠E=∠1(已知),
∴______=_______,(______)
∴AD平分∠BAC.(_______)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com