【題目】如圖,已知∠CAB=∠DAB,則添加下列一個(gè)條件不能使△ABC≌△ABD的是( )
A.AC=AD
B.BC=BD
C.∠C=∠D
D.∠ABC=∠ABD
【答案】B
【解析】解:A、∵在△ABC和△ABD中
∴△ABC≌△ABD(SAS),正確,故本選項(xiàng)錯(cuò)誤;
B、根據(jù)BC=BD,AB=AB和∠CAB=∠DAB不能推出兩三角形全等,錯(cuò)誤,故本選項(xiàng)正確;
C、∵在△ABC和△ABD中
∴△ABC≌△ABD(AAS),正確,故本選項(xiàng)錯(cuò)誤;
D、∵在△ABC和△ABD中
∴△ABC≌△ABD(ASA),正確,故本選項(xiàng)錯(cuò)誤;
故選B.
全等三角形的判定定理有SAS,ASA,AAS,SSS,已知有∠DAB=∠CAB和隱含條件AB=AB,看看再添加的條件和以上兩個(gè)條件是否符合全等三角形的判定定理即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y+2和x成正比例,當(dāng)x=2時(shí),y=4,則y與x的函數(shù)關(guān)系式是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們用[a]表示不大于a的最大整數(shù),例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a>表示大于a的最小整數(shù),例如:<2.5>=3,<3>=4,<-2.5>=-2.根據(jù)上述規(guī)定,解決下列問題:
(1)[-4.5]=______,<3.01>=____;
(2)若x為整數(shù),且[x]+<x>=2 017,求x的值;
(3)若x,y滿足方程組,求x,y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“搶紅包”是2015年春節(jié)十分火爆的一項(xiàng)網(wǎng)絡(luò)活動(dòng),某企業(yè)有4000名職工,從中隨機(jī)抽取350人,按年齡分布和“搶紅包”所持態(tài)度情況進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪成了條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
(1)這次調(diào)查中,如果職工年齡的中位數(shù)是整數(shù),那么這個(gè)中位數(shù)所在的年齡段是哪一段?
(2)如果把對“搶紅包”所持態(tài)度中的“經(jīng)常(搶紅包)”和“偶爾(搶紅包)”統(tǒng)稱為“參與搶紅包”,那么這次接受調(diào)查的職工中“參與搶紅包”的人數(shù)是多少?并估計(jì)該企業(yè)“從不(搶紅包)”的人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在推進(jìn)城鄉(xiāng)義務(wù)教育均衡發(fā)展工作中,我市某區(qū)政府通過公開招標(biāo)的方式為轄區(qū)內(nèi)全部鄉(xiāng)鎮(zhèn)中學(xué)采購了某型號的學(xué)生用電腦和教師用筆記本電腦,其中,A鄉(xiāng)鎮(zhèn)中學(xué)更新學(xué)生用電腦110臺和教師用筆記本電腦32臺,共花費(fèi)30.5萬元;B鄉(xiāng)鎮(zhèn)中學(xué)更新學(xué)生電腦55臺和教師用筆記本電腦24臺,共花費(fèi)17.65萬元.
(1)求該型號的學(xué)生用電腦和教師用筆記本電腦單價(jià)分別是多少萬元?
(2)經(jīng)統(tǒng)計(jì),全部鄉(xiāng)鎮(zhèn)中學(xué)需要購進(jìn)的教師用筆記本電腦臺數(shù)比購進(jìn)的學(xué)生用電腦臺數(shù)的少90臺,在兩種電腦的總費(fèi)用不超過預(yù)算438萬元的情況下,至多能購進(jìn)的學(xué)生用電腦和教師用筆記本電腦各多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象的頂點(diǎn)在原點(diǎn),且過點(diǎn)(2,4),求這個(gè)二次函數(shù)的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=,則下列結(jié)論:①AC⊥BD;②AC⊥CD;③tan∠DAC=2;④四邊形ABCD的面積為31;⑤BD=2.正確的是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件中,是隨機(jī)事件的是( )
A.任意畫兩個(gè)直角三角形,這兩個(gè)三角形相似B.相似三角形的對應(yīng)角相等
C.⊙O的半徑為5,OP=3,點(diǎn)P在⊙O外D.直徑所對的圓周角為直角
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題是假命題的是( ).
A. 同位角相等
B. 平行于同一直線的兩直線平行
C. 在同一平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直
D. 兩直線平行,內(nèi)錯(cuò)角相等
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com