在△ABC中,AB、BC、AC三邊的長(zhǎng)分別為
5
10
、
13
,求這個(gè)三角形的面積.小華同學(xué)在解答這道題時(shí),先畫一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.這種方法叫做構(gòu)圖法.
(1)△ABC的面積為:
3.5
3.5

(2)若△DEF三邊的長(zhǎng)分別為
5
、
8
、
17
,請(qǐng)?jiān)趫D2的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并利用構(gòu)圖法求出它的面積為
3
3

(3)如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過(guò)點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(4)如圖4,一個(gè)六邊形的花壇被分割成7個(gè)部分,其中正方形PRBA,RQDC,QPFE的面積分別為13m2、25m2、36m2,則六邊形花壇ABCDEF的面積是
110
110
m2
分析:(1)利用△ABC所在的正方形的面積減去四周三個(gè)小直角三角形的面積,計(jì)算即可得解;
(2)根據(jù)網(wǎng)格結(jié)構(gòu)和勾股定理作出△DEF,再利用△DEF所在的矩形的面積減去四周三個(gè)小直角三角形的面積,計(jì)算即可得解;
(3)利用同角的余角相等求出∠BAG=∠AEP,然后利用“角角邊”證明△ABG和△EAP全等,同理可證△ACG和△FAQ全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得EP=AG=FQ;
(4)過(guò)R作RH⊥PQ于H,設(shè)PH=h,在Rt△PRH和Rt△RQH中,利用勾股定理列式表示出PQ,然后解無(wú)理方程求出h,從而求出△PQR的面積,再根據(jù)六邊形被分成的四個(gè)三角形的面積相等,總面積等于各部分的面積之和列式計(jì)算即可得解.
解答:解:(1)△ABC的面積=3×3-
1
2
×2×1-
1
2
×3×1-
1
2
×2×3=,
=9-1-1.5-3,
=9-5.5,
=3.5;

(2)△DEF如圖2所示;
面積=2×4-
1
2
×1×2-
1
2
×2×2-
1
2
×1×4,
=8-1-2-2,
=8-5,
=3;

(3)∵△ABE是等腰直角三角形,
∴AB=AE,∠BAE=90°,
∴∠PAE+∠BAG=180°-90°=90°,
又∵∠AEP+∠PAE=90°,
∴∠BAG=∠AEP,
在△ABG和△EAP中,
∠BAG=∠AEP
∠AGB=∠EPA=90°
AB=AE
,
∴△ABG≌△EAP(AAS),
同理可證,△ACG≌△FAQ,
∴EP=AG=FQ;

(4)如圖4,過(guò)R作RH⊥PQ于H,設(shè)PH=h,
在Rt△PRH中,PH=
PR2-RH2
=
25-h2
,
在Rt△RQH中,QH=
RQ2-RH2
=
13-h2
,
∴PQ=
25-h2
+
13-h2
=6,
25-h2
=6-
13-h2
,
兩邊平方得,25-h2=36-12
13-h2
+13-h2,
整理得,
13-h2
=2,
兩邊平方得,13-h2=4,
解得h=3,
∴S△PQR=
1
2
×6×3=9,
∴六邊形花壇ABCDEF的面積=25+13+36+4×9=74+36=110m2
故答案為:(1)3.5;(2)3;(4)110.
點(diǎn)評(píng):本題考查了勾股定理,構(gòu)圖法求三角形的面積,全等三角形的判定與性質(zhì),讀懂題目信息,理解構(gòu)圖法的操作方法是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•寧德質(zhì)檢)如圖,在△ABC中,AB=AC=6,點(diǎn)0為AC的中點(diǎn),OE⊥AB于點(diǎn)E,OE=
32
,以點(diǎn)0為圓心,OA為半徑的圓交AB于點(diǎn)F.
(1)求AF的長(zhǎng);
(2)連結(jié)FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•襄陽(yáng))如圖,在△ABC中,AB=AC,AD⊥BC于點(diǎn)D,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使AC與AB重合,點(diǎn)D落在點(diǎn)E處,AE的延長(zhǎng)線交CB的延長(zhǎng)線于點(diǎn)M,EB的延長(zhǎng)線交AD的延長(zhǎng)線于點(diǎn)N.
求證:AM=AN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,AB=AC,把△ABC繞著點(diǎn)A旋轉(zhuǎn)至△AB1C1的位置,AB1交BC于點(diǎn)D,B1C1交AC于點(diǎn)E.求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•濱湖區(qū)一模)如圖,在△ABC中,AB是⊙O的直徑,∠B=60°,∠C=70°,則∠BOD的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•吉林)如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作?ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習(xí)冊(cè)答案