【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+2經(jīng)過點A(﹣1,0)和點B(4,0),且與y軸交于點C,點D的坐標為(2,0),點P(m,n)是該拋物線上的一個動點,連接CA,CD,PD,PB.
(1)求該拋物線的解析式;
(2)當△PDB的面積等于△CAD的面積時,求點P的坐標;
(3)當m>0,n>0時,過點P作直線PE⊥y軸于點E交直線BC于點F,過點F作FG⊥x軸于點G,連接EG,請直接寫出隨著點P的運動,線段EG的最小值.
【答案】(1);(2)點P的坐標是(1,3)、(2,3)、(5,-3)或(-2,-3);(3)線段EG的最小值為..
【解析】
(1)根據(jù)拋物線y=ax2+bx+2經(jīng)過點A(-1,0)和點B(4,0),應(yīng)用待定系數(shù)法,求出該拋物線的解析式即可;
(2)首先根據(jù)三角形的面積的求法,求出△CAD的面積,即可求出△PDB的面積,然后求出BD=2,即可求出|n|=3,據(jù)此判斷出n=3或-3,再把它代入拋物線的解析式,求出x的值是多少,即可判斷出點P的坐標;
(3)首先應(yīng)用待定系數(shù)法,求出BC所在的直線的解析式,然后根據(jù)點P的坐標是(m,n),求出點F的坐標,再根據(jù)二次函數(shù)最值的求法,求出EG2的最小值,即可求出線段EG的最小值.
解:(1)把A(-1,0),B(4,0)兩點的坐標代入y=ax2+bx+2中,可得
,
解得:,
∴拋物線的解析式為:;
(2))∵拋物線的解析式為,
當x=0時,y=2,
∴點C的坐標是(0,2),
∵點A(-1,0)、點D(2,0),
∴AD=2-(-1)=3,
∴S△CAD =,
∴S△PDB =3,
∵點B(4,0)、點D(2,0),
∴BD=2,
∴|n|=3×2÷2=3,
∴n=3或-3,
①當n=3時,
,
解得:m=1或m=2,
∴點P的坐標是(1,3)或(2,3);
②當n=-3時,
解得m=5或m=-2,
∴點P的坐標是(5,-3)或(-2,-3);
綜上,可得點P的坐標是(1,3)、(2,3)、(5,-3)或(-2,-3);
(3)如圖,
設(shè)BC所在的直線的解析式是:y=mx+n,
∵點C的坐標是(0,2),點B的坐標是(4,0),
∴,
解得:,
∴BC所在的直線的解析式是:,
∵點P的坐標是(m,n),
∴點F的坐標是(4-2n,n),
∴
,
∴當時,線段EG有最小值:,
∴線段EG的最小值為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A的坐標為軸于點,反比例函數(shù)的圖像的一支分別交于點,延長交反比例函數(shù)的圖像的另一支于點E,已知D的縱坐標為.
(1)求反比例函數(shù)的解析式及直線OA的解析式;
(2)連接BC,已知,求
(3)若在軸上有兩點,將直線繞點旋轉(zhuǎn),仍與交于,能否構(gòu)成以為頂點的四邊形為菱形,如果能請求出的值,如果不能說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E是平行四邊形ABCD的邊CD的中點,延長AE交BC的延長線于點F.
(1)求證:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】便民”水泥代銷點銷售某種水泥,每噸進價為250元,如果每噸銷售價定為290元時,平均每天可售出16噸.
(1)若代銷點采取降低促銷的方式,試建立每噸的銷售利潤y(元)與每噸降低x(元)之間的函數(shù)關(guān)系式;
(2)若每噸售價每降低5元,則平均每天能多售出4噸,問:每噸水泥的實際售價定為多少元時,每天的銷售利潤平均可達720元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】九(1)班組織班級聯(lián)歡會,最后進入抽獎環(huán)節(jié),每名同學都有一次抽獎機會,抽獎方案如下:將一副撲克牌中點數(shù)為“2”,“3”,“3”,“5”,“6”的五張牌背面朝上洗勻,先從中抽出1張牌,再從余下的4張牌中抽出1張牌,記錄兩張牌點數(shù)后放回,完成一次抽獎,記每次抽出兩張牌點數(shù)之差為,按表格要求確定獎項.
(1)用列表或畫樹狀圖的方法求出甲同學獲得一等獎的概率;
(2)是否每次抽獎都會獲獎,為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】移動通信公司建設(shè)的鋼架信號塔(如圖1),它的一個側(cè)面的示意圖(如圖2).CD是等腰三角形ABC底邊上的高,分別過點A、點B作兩腰的垂線段,垂足分別為B1,A1,再過A1,B1分別作兩腰的垂線段所得的垂足為B2,A2,用同樣的作法依次得到垂足B3,A3,….若AB為3米,sinα=,則水平鋼條A2B2的長度為( )
A. 米B. 2米C. 米D. 米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形中,,,是的一點,且,是上一點,射線交的延長線于點,交于點,連結(jié),,交于點.
(1)當點為中點時,則 , ;(直接寫出答案)
(2)在整個運動過程中,的值是否會變化,若不變,求出它的值;若變化,請說明理由;
(3)若為等腰三角形時,請求出所有滿足條件的的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx﹣3與x軸交于A,B兩點,與y軸交于點C,且OB=OC=3OA,求拋物線的解析式( 。
A.y=x2﹣2x﹣3B.y=x2﹣2x+3C.y=x2﹣2x﹣4D.y=x2﹣2x﹣5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學生的學習興趣如何是每位教師非常關(guān)注的問題.為此,某校教師對該校部分學生的學習興趣進行了一次抽樣調(diào)查(把學生的學習興趣分為三個層次,A層次:很感興趣;B層次:較感興趣;C層次:不感興趣);并將調(diào)查結(jié)果繪制成了圖①和圖②的統(tǒng)計圖(不完整).請你根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學生;
(2)將圖①補充完整;
(3)求圖②中C層次所在扇形的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查的結(jié)果,請你估計該校1200名學生中大約有多少名學生對學習感興趣(包括A層次和B層次).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com