【題目】如圖,在△ABC中,AB=AC,DAB的中點,且DE⊥AB,△BCE的周長為8cm,且AC﹣BC=2cm,求AB、BC的長.

【答案】AB=5cm,BC=3cm.

【解析】試題分析:根據(jù)ABC中,AB=AC,DAB的中點,且DEAB可知,AE=BE,根據(jù)BCE的周長為8cm可求出BC+AC的長,再根據(jù)ACBC=2cm即可求解.

試題解析:解:∵△ABC中,AB=AC,DAB的中點,且DEAB,AE=BE,∵△BCE的周長為8cm,即BE+CE+BC=8cm,AC+BC=8cm…①,ACBC=2cm…②,①+②得,2AC=10cm,即AC=5cm,故AB=5cm;

①﹣②得,2BC=6cm,BC=3cm

AB=5cmBC=3cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】高速路上因趕時間超速而頻頻發(fā)生交通事故,這樣給自己和他人的生命安全帶來直接影響,為了解車速情況,一名執(zhí)法交警在高速路上隨機測試了6個小轎車的車速情況記錄如下:

車序號

1

2

3

4

5

6

車速(千米/時)

100

95

106

100

120

100

則這6輛車車速的眾數(shù)和中位數(shù)(單位:千米/時)分別是(
A.100,95
B.100,100
C.102,100
D.100,103

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=AC,A=36°,AB的中垂線交AC于點E,交AB于點D,下面4個結(jié)論:

①射線BE是∠ABC的平分線;BCE是等腰三角形;ABE是等腰三角形;ADE≌△BDE;

1)判斷其中正確的結(jié)論是哪幾個?

2)從你認(rèn)為是正確的結(jié)論中選一個加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,已知:在ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.

(2)如圖2,將(1)中的條件改為:在ABC中,AB=AC,D、A、E三點都在直線m上,并且∠BDA=AEC=BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?若成立,請給出證明;若不成立,請說明理由.

(3)拓展與應(yīng)用:如圖3,D、ED、A、E三點所在直線m上的兩動點(D、A、E三點

互不重合),點F為∠BAC平分線上的一點,且ABFACF均為等邊三角形,連接BD、CE,若∠BDA=AEC=BAC,試判斷DEF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某烤鴨店在確定烤鴨的烤制時間時,主要依據(jù)的是下表的數(shù)據(jù):

鴨的質(zhì)量/kg

0.5

1

1.5

2

2.5

3

3.5

4

烤制時間/min

40

60

80

100

120

140

160

180

若鴨的質(zhì)量為3.2kg時,烤制時間為_____min

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ACB中,∠ACB=90°,AC=BC,點C的坐標(biāo)為(﹣2,0),點A的坐標(biāo)為(﹣6,3),求點B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列語句中表述正確的是(
A.延長直線AB
B.延長射線AB
C.作直線AB=BC
D.延長線段AB到C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABx軸于點Aa,0),y軸于點B0,b),a、b滿足

1A的坐標(biāo)為 ;B的坐標(biāo)為 ;

2如圖1,若點C的坐標(biāo)為(-3,-2),BEAC于點E,ODOCBE延長線于D試求點D的坐標(biāo);

3如圖2M、N分別為OAOB邊上的點,OM=ONOPANAB于點P,過點P PGBM,AN的延長線于點G請寫出線段AG、OPPG之間的數(shù)量關(guān)系,并證明你的結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,點E,O,F(xiàn)分別為AB,AC,AD的中點,連接CE,CF,OE,OF.

(1)求證:△BCE≌△DCF;

(2)當(dāng)AB與BC滿足什么關(guān)系時,四邊形AEOF是正方形?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案