【題目】啟明公司生產(chǎn)某種產(chǎn)品,每件成本是3元,售價(jià)是4元,年銷售量為10萬(wàn)件.為了獲得更好的效益,公司準(zhǔn)備拿出一定的資金做廣告,根據(jù)經(jīng)驗(yàn),每年投入的廣告費(fèi)是x( 萬(wàn)元)時(shí),產(chǎn)品的年銷售量是原銷售量的y倍,且y=. 如果把利潤(rùn)看作是銷售總額減去成本和廣告費(fèi):
(1)試寫出年利潤(rùn)s(萬(wàn)元)與廣告費(fèi)x(萬(wàn)元)的函數(shù)關(guān)系式,并計(jì)算廣告費(fèi)是多少萬(wàn)元時(shí),公司獲得的年利潤(rùn)最大?最大年利潤(rùn)是多少萬(wàn)元?
(2)把(1)中的最大利潤(rùn)留出3萬(wàn)元做廣告,其余的資金投資新項(xiàng)目,現(xiàn)有6個(gè)項(xiàng)目可供選擇,各項(xiàng)目每股投資金額和預(yù)計(jì)年收益如下表:
項(xiàng)目 | A | B | C | D | E | F |
每股(萬(wàn)元) | 5 | 2 | 6 | 4 | 6 | 8 |
收益(萬(wàn)元) | 0.55 | 0.4 | 0.6 | 0.5 | 0.9 | 1 |
如果每個(gè)項(xiàng)目只能投一股,且要求所有投資項(xiàng)目的收益總額不得低于1.6萬(wàn)元, 問(wèn)有幾種符合要求的方式?寫出每種投資方式所選的項(xiàng)目.
【答案】(1)s=-x2+6x+7,當(dāng)廣告費(fèi)是3萬(wàn)元時(shí),公司獲得的最大年利潤(rùn)是16萬(wàn)元.
(2)有下列兩種投資方式符合要求:①取A、B、E各一股,②取B、D、E各一股
【解析】
試題(1)根據(jù)年利潤(rùn)=單利潤(rùn)×年銷售量即可得到函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)果;
(2)根據(jù)廣告3萬(wàn)元,投資項(xiàng)目的收益總額不低于1.6萬(wàn)元,再仔細(xì)分析表中數(shù)據(jù)即可得到結(jié)果.
(1)s=10××(4-3)-x=-x2+6x+7.
當(dāng)x==3 時(shí),
S最大==16.
∴當(dāng)廣告費(fèi)是3萬(wàn)元時(shí),公司獲得的最大年利潤(rùn)是16萬(wàn)元.
(2)用于再投資的資金有=16-3=13萬(wàn)元.
有下列兩種投資方式符合要求:
①取A、B、E各一股,投入資金為5+2+6=13萬(wàn)元,
收益為0.55+0.4+0.9=1.85萬(wàn)元>1.6萬(wàn)元.
②取B、D、E各一股,投入資金為2+4+6=12萬(wàn)元<13萬(wàn)元,
收益為0.4+0.5+0.9=1.8萬(wàn)元>1.6萬(wàn)元 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以點(diǎn)A為圓心,任意長(zhǎng)為半徑畫弧分別交AB,AC于點(diǎn)M和N,再分別以點(diǎn)M,N為圓心畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列說(shuō)法中正確的個(gè)數(shù)是( 。
①AD是∠BAC的平分線
②∠ADC=60°
③△ABD是等腰三角形
④點(diǎn)D到直線AB的距離等于CD的長(zhǎng)度.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了弘揚(yáng)泰山文化,某校舉辦了“泰山詩(shī)文大賽”活動(dòng),從中隨機(jī)抽取部分學(xué)生的比賽成績(jī),根據(jù)成績(jī)(高成都績(jī)于50分),繪制了如下的統(tǒng)計(jì)圖表(不完整);
請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)求出、的值;
(2)計(jì)算扇形統(tǒng)計(jì)圖中“第5組”所在扇形圓心角的度數(shù);
(3)若該校共有1800名學(xué)生,那么成績(jī)高于80分的共有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將兩個(gè)等腰Rt△ADE、Rt△ABC如圖放置在一起,其中∠DAE=∠ABC=90°.點(diǎn)E在AB上,AC與DE交于點(diǎn)H,連接BH、CE,且∠BCE=15°,下列結(jié)論:①AC垂直平分DE;②△CDE為等邊三角形;③tan∠BCD=;④;正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過(guò)A(1,0)、B(4,0)、C(0,3)三點(diǎn).
(1)求該拋物線的解析式;
(2)如圖,在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得四邊形PAOC的周長(zhǎng)最。咳舸嬖,求出四邊形PAOC周長(zhǎng)的最小值;若不存在,請(qǐng)說(shuō)明理由.
(3)在(2)的條件下,點(diǎn)Q是線段OB上一動(dòng)點(diǎn),當(dāng)△BPQ與△BAC相似時(shí),求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高速鐵路位于某省南部,是國(guó)家“八縱八橫”高速鐵路網(wǎng)的重要連接通道,也是某省“三橫五縱”高速鐵路網(wǎng)的重要組成部分.東起日照,向西貫穿臨沂、曲阜、濟(jì)寧、菏澤,與鄭徐客運(yùn)專線蘭考南站接軌.工程有一段在一條河邊,且剛好為東西走向.B處是一個(gè)高鐵維護(hù)站,如圖①,現(xiàn)在想過(guò)B處在河上修一座橋,需要知道河寬,一測(cè)量員在河對(duì)岸的A處測(cè)得B在它的東北方向,測(cè)量員從A點(diǎn)開始沿岸邊向正東方向前進(jìn)300米到達(dá)點(diǎn)C處,測(cè)得B在C的北偏西30度方向上.
(1)求所測(cè)之處河的寬度;(結(jié)果保留的十分位)
(2)除(1)的測(cè)量方案外,請(qǐng)你再設(shè)計(jì)一種測(cè)量河寬的方案,并在圖②中畫出圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與x軸、y軸分別交于A,B兩點(diǎn),C是OB的中點(diǎn),D是AB上一點(diǎn),四邊形OEDC是菱形,則△OAE的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知△ABC中,AB=AC,點(diǎn)P是BC上的一點(diǎn),PN⊥AC于點(diǎn)N,PM⊥AB于點(diǎn)M,CG⊥AB于點(diǎn)G點(diǎn).
(1)則線段CG、PM、PN三者之間的數(shù)量關(guān)系是 ;
(2)如圖②,若點(diǎn)P在BC的延長(zhǎng)線上,則線段CG、PM、PN三者是否還有上述關(guān)系,若有,請(qǐng)說(shuō)明理由,若沒(méi)有,猜想三者之間又有怎樣的關(guān)系,并證明你的猜想;
(3)如圖③,點(diǎn)E在正方形ABCD的對(duì)角線AC上,且AE=AD,點(diǎn)P是BE上任一點(diǎn),PN⊥AB于點(diǎn)N,PM⊥AC于點(diǎn)M,若正方形ABCD的面積是12,請(qǐng)直接寫出PM+PN的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,分別以點(diǎn)A、C為圓心,以大于AC的長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)D和E,作直線DE交AB于點(diǎn)F,交AC于點(diǎn)G,連接CF,以點(diǎn)C為圓心,以CF的長(zhǎng)為半徑畫弧,交AC于點(diǎn)H.若∠A=30°,BC=2,則AH的長(zhǎng)是( )
A. B. 2C. +1D. 2﹣2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com