【題目】如圖,矩形ABCD的對角線BD經(jīng)過坐標原點,矩形的邊分別平行于坐標軸,點C在反比例函數(shù) 的圖象上.若點A的坐標為(﹣2,﹣2),則k的值為( )
A.1
B.﹣3
C.4
D.1或﹣3
【答案】D
【解析】解:設(shè)C(x,y). ∵四邊形ABCD是矩形,點A的坐標為(﹣2,﹣2),
∴B(﹣2,y)、D(x,﹣2);
∵矩形ABCD的對角線BD經(jīng)過坐標原點,
∴設(shè)直線BD的函數(shù)關(guān)系式為:y=kx,
∵B(﹣2,y)、D(x,﹣2),
∴k= ,k= ,
∴ = ,即xy=4;①
又∵點C在反比例函數(shù) 的圖象上,
∴xy=k2+2k+1,②
由①②,得
k2+2k﹣3=0,即(k﹣1)(k+3)=0,
∴k=1或k=﹣3,
故選D.
設(shè)C(x,y).根據(jù)矩形的性質(zhì)、點A的坐標分別求出B(﹣2,y)、D(x,﹣2);根據(jù)“矩形ABCD的對角線BD經(jīng)過坐標原點”及直線AB的幾何意義求得xy=4①,又點C在反比例函數(shù) 的圖象上,所以將點C的坐標代入其中求得xy=k2+2k+1②;聯(lián)立①②解關(guān)于k的一元二次方程即可.
科目:初中數(shù)學 來源: 題型:
【題目】對于鈍角α,定義它的三角函數(shù)數(shù)值如下: sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α).
(1)求sin135°,cos150°的值;
(2)若一個三角形的三個內(nèi)角的比為1:1:4,A,B是這個三角形的兩個頂點,且∠A≤∠B,sinA,cosB是方程4x2﹣mx﹣1=0的兩個不相等的實數(shù)根,求m值及∠A,∠B的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,且點A的坐標為(﹣3,0),點C坐標為(0, ),點B在y軸的負半軸上,拋物線y=﹣ x2+bx+c經(jīng)過點A和點C
(1)求b,c的值;
(2)在拋物線的對稱軸上是否存在點Q,使得△ACQ為等腰三角形?若存在,直接寫出點Q的坐標;若不存在,請說明理由
(3)點P是線段AO上的一個動點,過點P作y軸的平行線交拋物線于點M,交AB于點E,探究:當點P在什么位置時,四邊形MEBC是平行四邊形,此時,請判斷四邊形AECM的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把大小和形狀完全相同的6張卡片分成兩組,每組3張,分別標上1、2、3,將這兩組卡片分別放入兩個盒子中攪勻,再從中隨機抽取一張.
(1)試求取出的兩張卡片數(shù)字之和為奇數(shù)的概率;
(2)若取出的兩張卡片數(shù)字之和為奇數(shù),則甲勝;取出的兩張卡片數(shù)字之和為偶數(shù),則乙勝;試分析這個游戲是否公平?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的對角線BD經(jīng)過坐標原點,矩形的邊分別平行于坐標軸,點C在反比例函數(shù) 的圖象上.若點A的坐標為(﹣2,﹣2),則k的值為( )
A.1
B.﹣3
C.4
D.1或﹣3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線m,n的夾角為35°,相交于點O,
(1)作出△ABC關(guān)于直線m的對稱△DEF;
(2)作出△DEF關(guān)于直線n的對稱△PQR;
(3)△PQR還可以由△ABC經(jīng)過一次怎樣的變換得到.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】李明到離家2.1千米的學校參加初三聯(lián)歡會,到學校時發(fā)現(xiàn)演出道具還放在家中,此時距聯(lián)歡會開始還有42分鐘,于是他立即勻速步行回家,在家拿道具用了1分鐘,然后立即勻速騎自行車返回學校.已知李明騎自行車到學校比他從學校步行到家用時少20分鐘,且騎自行車的速度是步行速度的3倍.
(1)李明步行的速度(單位:米/分)是多少?
(2)李明能否在聯(lián)歡會開始前趕到學校?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,過點A(0,4)的圓的圓心坐標為C(2,0),B是第一象限圓弧上的一點,且BC⊥AC,拋物線y= x2+bx+c經(jīng)過C、B兩點,與x軸的另一交點為D.
(1)點B的坐標為( , ),拋物線的表達式為;
(2)如圖2,求證:BD∥AC;
(3)如圖3,點Q為線段BC上一點,且AQ=5,直線AQ交⊙C于點P,求AP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD 中,AB=2,點E 在邊AD 上,∠ABE=45°,BE=DE,連接BD,點P 在線段DE 上,過點P 作PQ∥BD 交BE 于點Q,連接QD.設(shè)PD=x,△PQD 的面積為y,則能表示y 與x 函數(shù)關(guān)系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com