【題目】如圖,直線m,n的夾角為35°,相交于點O,
(1)作出△ABC關(guān)于直線m的對稱△DEF;
(2)作出△DEF關(guān)于直線n的對稱△PQR;
(3)△PQR還可以由△ABC經(jīng)過一次怎樣的變換得到.
【答案】
(1)
解:△ABC關(guān)于直線m的對稱△DEF如圖所示.
(2)
解:△DEF關(guān)于直線n的對稱△PQR如圖所示
(3)
解:△PQR還可以由△ABC繞點O逆時針旋轉(zhuǎn)70°得到
【解析】(1)根據(jù)軸對稱的定義分別作出A、B、C三點關(guān)于直線m的對稱點D、E、F即可.(2)根據(jù)軸對稱的定義分別作出D、E、F三點關(guān)于直線m的對稱點P、Q、R即可.(3)根據(jù)旋轉(zhuǎn)變換的定義可知,△PQR還可以由△ABC繞點O逆時針旋轉(zhuǎn)70°得到.
【考點精析】利用軸對稱的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知關(guān)于某條直線對稱的兩個圖形是全等形;如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線;兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正△ABC的邊長為2,以BC邊上的高AB1為邊作正△AB1C1 , △ABC與△AB1C1公共部分的面積記為S1;再以正△AB1C1邊B1C1上的高AB2為邊作正△AB2C2 , △AB1C1與△AB2C2公共部分的面積記為S2;…,以此類推,則Sn= . (用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的邊OA、OC分別在x軸、y軸的正半軸上,且OA=3,OC=2,將矩形OABC向上平移4個單位得到矩形O1A1B1C1 .
(1)若反比例函數(shù)y= 和y= 的圖象分別經(jīng)過點B、B1 , 求k1和k2的值;
(2)將矩形O1A1B1C1向左平移得到O2A2B2C2 , 當(dāng)點O2、B2在反比例函數(shù)y= 的圖象上時,求平移的距離和k3的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,小明騎自行車從家里出發(fā)到野外郊游.從家出發(fā)1小時后到達(dá)南亞所(景點),游玩一段時間后按原速前往湖光巖.小明離家1小時50分鐘后,媽媽駕車沿相同路線前往湖光巖,如圖是他們離家的路程y(km)與小明離家時間x(h)的函數(shù)圖象.
(1)求小明騎車的速度和在南亞所游玩的時間;
(2)若媽媽在出發(fā)后25分鐘時,剛好在湖光巖門口追上小明,求媽媽駕車的速度及CD所在直線的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線BD經(jīng)過坐標(biāo)原點,矩形的邊分別平行于坐標(biāo)軸,點C在反比例函數(shù) 的圖象上.若點A的坐標(biāo)為(﹣2,﹣2),則k的值為( )
A.1
B.﹣3
C.4
D.1或﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線m,n的夾角為35°,相交于點O,
(1)作出△ABC關(guān)于直線m的對稱△DEF;
(2)作出△DEF關(guān)于直線n的對稱△PQR;
(3)△PQR還可以由△ABC經(jīng)過一次怎樣的變換得到.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)前,“校園手機(jī)”現(xiàn)象已經(jīng)受到社會廣泛關(guān)注,某數(shù)學(xué)興趣小組對“是否贊成中學(xué)生帶手機(jī)進(jìn)校園”的問題進(jìn)行了社會調(diào)查.小文將調(diào)查數(shù)據(jù)作出如下不完整的整理: 頻數(shù)分布表
看法 | 頻數(shù) | 頻率 |
贊成 | 5 | |
無所謂 | 0.1 | |
反對 | 40 | 0.8 |
(1)請求出共調(diào)查了多少人;并把小文整理的圖表補充完整;
(2)小麗要將調(diào)查數(shù)據(jù)繪制成扇形統(tǒng)計圖,則扇形圖中“贊成”的圓心角是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形 ABCD 中,AE 平分∠BAD,交 BC 于 E,過 E 做 EF⊥AD 于 F,連接BF交AE于P,連接PD.
(1)求證:四邊形ABEF 是正方形;
(2)如果AB=6,AD=8,求tan∠ADP的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com