【題目】如圖所示,M,N,PR分別是數(shù)軸上的四個整數(shù)所對應的點,其中有一個點是原點,并且,MN=NP=PR=1,數(shù)a對應的點在MN之間,數(shù)b對應的點在PR之間,若|a|+|b|=2,則原點是(填M,N,P,R中的一個或幾個)_____________

【答案】P,N

【解析】

根據(jù)絕對值的概念,逐點進行討論,見詳解.

解:由MN=NP=PR=1

MR=MN+NP+PR=3,M,R兩點之間的距離是3,

∵數(shù)a對應的點在MN之間,數(shù)b對應的點在PR之間,|a|+|b|=2,

a,b之間的距離小于等于2,

M是原點時, |a|+|b|2,

N是原點時, 有可能|a|+|b|=2,

P是原點時, 有可能|a|+|b|=2,

R是原點時, |a|+|b|2,

綜上, 原點是NP

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】操作探究:已知在紙面上有一數(shù)軸(如圖所示).

操作一

(1)折疊紙面,使1表示的點與-1表示的點重合,則-3表示的點與________表示的點重合;

操作二:

(2)折疊紙面,使-1表示的點與3表示的點重合,回答以下問題:

5表示的點與數(shù)________表示的點重合;

②若數(shù)軸上AB兩點之間距離為11(AB的左側),且A、B兩點經(jīng)折疊后重合,求A、B兩點表示的數(shù)是多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】任選一題作答,只計一題的成績:

一、如圖,某工廠和一條筆直的公路,原有兩條路,可以到達,經(jīng)測量,,,現(xiàn)需要修建一條新公路,使的距離最短.請你幫設計一種方案,并求新建公路的長.

二、如圖,,,,

1)試判斷以點,,為頂點的三角形的形狀,并說明理由;

2)求該圖的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在社會主義新農(nóng)村建設中,某鄉(xiāng)鎮(zhèn)決定對一段公路進行改造,已知這項工程由甲工程隊單獨做需要40天完成;如果由乙工程先單獨做10天,那么剩下的工程還需要兩隊合做20天才能完成.

(1)求乙工程隊單獨完成這項工程所需的天數(shù);

(2)求兩隊合作完成這項工程所需的天數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,若|ax2+bx+c|=k(k≠0)有兩個不相等的實數(shù)根,則k的取值范圍是( )

A. k<-3 B. k>-3 C. k<3 D. k>3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=mx2-6x+1(m是常數(shù)).

(1)求證:不論m為何值,該函數(shù)的圖象都經(jīng)過y軸上的一個定點;

(2)若該函數(shù)的圖象與x軸只有一個交點,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1)(+17)+(-12);

210+(―)―6―(―0.25);

3)(48

4)|-54|-5×(-221÷(-

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,ACBD,折線AMB夾在兩條平行線間.(1)判斷∠M,A,B的關系;(2)請你嘗試改變問題中的某些條件,探索相應的結論.建議:①折線中折線段數(shù)量增加到n(n=3,4,…);

②可如圖1,圖2,或M點在平行線外側.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖中是一幅“蘋果排列圖”,第一行有1個蘋果,第二行有2個,第三行有4個,第四行有8個,….你是否發(fā)現(xiàn)蘋果的排列規(guī)律?猜猜看,第十行有_____個蘋果;第n行有_____ 個蘋果.(可用乘方形式表示)

查看答案和解析>>

同步練習冊答案