精英家教網 > 初中數學 > 題目詳情

【題目】如圖1,長、寬均為高為的長方體容器,放置在水平桌面上,里面盛有水,水面高為,繞底面一棱進行旋轉傾斜后,水面恰好觸到容器口邊緣,圖2是此時的示意圖,則圖2中水面高度為___________

【答案】

【解析】

過點CCFBG于點F,設DE=x,根據水的體積不變,列出方程,求出x的值,進而求出CD的值,由DEC~BFC,得,進而即可求解.

過點CCFBG于點F

DE=x,則AD=8-x

根據題意得:(8-x+8)×3×3=3×3×6,解得:x=4,

DE=4,

∵∠E=90°,

CD=,

∵∠BCE=DCF=90°,

∴∠DCE=BCF,

∵∠DEC=BFC=90°,

DEC~BFC,

,即:,

CF=

故答是:

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx﹣5y軸于點A,交x軸于點B(﹣5,0)和點C(1,0),過點AADx軸交拋物線于點D.

(1)求此拋物線的表達式;

(2)點E是拋物線上一點,且點E關于x軸的對稱點在直線AD上,求△EAD的面積;

(3)若點P是直線AB下方的拋物線上一動點,當點P運動到某一位置時,△ABP的面積最大,求出此時點P的坐標和△ABP的最大面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,ABCD,對角線AC、BD交于點E,點F在邊AB上,連接CF交線段BE于點G,CG2=GEGD.

(1)求證:ACF=ABD;

(2)連接EF,求證:EFCG=EGCB.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,一張矩形紙片ABCD,其中AD=8cm,AB=6cm,先沿對角線BD折疊,點C落在點C′的位置,BC′AD于點G

   

1)求證:BG=DG;

2)求C′G的長;

3)如圖2,再折疊一次,使點DA重合,折痕ENADM,求EM的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,點PAB延長線上一點,∠BCP=∠A

1)求證:直線PC是⊙O的切線;

2)若CACP,⊙O的半徑為2,求CP的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】矩形中,點分別在邊上,點分別在邊上,交于點,記

1)如圖1,當時,若,求的值;

2)如圖2,當時,求的最大值和最小值;

3)若的值為3,當重合且為直角三角形時,直接寫出的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)如圖1,正方形中,、分別是、邊長的點,交于點,.求證:

2)如圖2,矩形中,、分別是、邊上的點,交于點,.求證:

3)如圖3,若(2)種的四邊形是平行四邊形,且,則是否仍然成立?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AD是⊙O的直徑,以A為圓心,弦AB為半徑畫弧交⊙O于點C,連結BCAD于點E,若DE3,BC8,則⊙O的半徑長為(

A.B.5C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線l1l2Ol1l2分別相切于點A和點B.點M和點N分別是l1l2上的動點,MN沿l1l2平移.⊙O的半徑為1,1=60°.有下列結論:①MN=;②若MN與⊙O相切,則AM=;③若∠MON=90°,則MN與⊙O相切;④l1l2的距離為2,其中正確的有(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

同步練習冊答案