【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,點P是AB延長線上一點,∠BCP=∠A.
(1)求證:直線PC是⊙O的切線;
(2)若CA=CP,⊙O的半徑為2,求CP的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=6,BC=10,AB⊥AC,點P從點B出發(fā)沿著B→A→C的路徑運動,同時點Q從點A出發(fā)沿著A→C→D的路徑以相同的速度運動,當點P到達點C時,點Q隨之停止運動,設(shè)點P運動的路程為x,y=PQ2,下列圖象中大致反映y與x之間的函數(shù)關(guān)系的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究:如圖,在平面直角坐標系xOy中,四邊形OABC是平行四邊形,A、C兩點的坐標分別為(4,0),(-2,3),拋物線W經(jīng)過O、A、C三點,D是拋物線W的頂點.
(1)求拋物線W的解析式及頂點D的坐標;
(2)將拋物線W和OABC一起先向右平移4個單位后,再向下平移m(0<m<3)個單位,得到拋物線W′和O′A′B′C′,在向下平移的過程中,設(shè)O′A′B′C′與OABC的重疊部分的面積為S,試探究:當m為何值時S有最大值,并求出S的最大值;
(3)在(2)的條件下,當S取最大值時,設(shè)此時拋物線W′的頂點為F,若點M是x軸上的動點,點N是拋物線W′上的動點,試判斷是否存在這樣的點M和點N,使得以D、F、M、N為頂點的四邊形是平行四邊形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線與軸交于,兩點,與軸交于.
(1)求函數(shù)表達式;
(2)點是線段中點,點是上方拋物線上一動點,連接,.當的面積最大時,過點作軸垂線,垂足為,點為線段上一動點,將繞點順時針方向旋轉(zhuǎn)90°,點,,的對應(yīng)點分別是,,,點從點出發(fā),先沿適當?shù)穆窂竭\動到點處,再沿運動到點處,最后沿適當?shù)穆窂竭\動到點處停止.求面積的最大值及點經(jīng)過的最短路徑的長;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一直角坐標系中,函數(shù)y=mx+m和函數(shù)y=mx2+2x+2 (m是常數(shù),且m≠0)的圖象可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,長、寬均為高為的長方體容器,放置在水平桌面上,里面盛有水,水面高為,繞底面一棱進行旋轉(zhuǎn)傾斜后,水面恰好觸到容器口邊緣,圖2是此時的示意圖,則圖2中水面高度為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象與反比例函數(shù) (k ≠ 0) 在第一象限內(nèi)的圖象交于點A(1,m).
(1) 求反比例函數(shù)的表達式;
(2) 點B在反比例函數(shù)的圖象上, 且點B的橫坐標為2. 若在x軸上存在一點M,使MA+MB的值最小,求點M的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點D.
(1)求證:BE=CF.
(2)當四邊形ACDE為菱形時,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李輝到服裝專賣店去做社會調(diào)查,了解到商店為了激勵營業(yè)員的工作積極性實行了“月總收入=基本工資+計件獎金”的方法,并獲得了如下信息:
營業(yè)員 | 嘉琪 | 嘉善 |
月銷售件數(shù)/件 | 400 | 300 |
月總收入/元 | 7800 | 6600 |
假設(shè)月銷售件數(shù)為x件,月總收入為y元,銷售每件獎勵a元,營業(yè)員月基本工資為b元.
(1)求a、b的值.
(2)若營業(yè)員嘉善某月總收入不低于4200元,那么嘉善當月至少要賣多少件衣服?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com