【題目】如圖1,在平面直角坐標(biāo)系中,拋物線軸交于兩點(diǎn),與軸交于

1)求函數(shù)表達(dá)式;

2)點(diǎn)是線段中點(diǎn),點(diǎn)上方拋物線上一動(dòng)點(diǎn),連接,.當(dāng)的面積最大時(shí),過(guò)點(diǎn)軸垂線,垂足為,點(diǎn)為線段上一動(dòng)點(diǎn),將繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)90°,點(diǎn),,的對(duì)應(yīng)點(diǎn)分別是,,點(diǎn)從點(diǎn)出發(fā),先沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到點(diǎn)處,再沿運(yùn)動(dòng)到點(diǎn)處,最后沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到點(diǎn)處停止.求面積的最大值及點(diǎn)經(jīng)過(guò)的最短路徑的長(zhǎng);

【答案】1;(2)最大面積為;點(diǎn)Q運(yùn)動(dòng)最短路徑為

【解析】

1)根據(jù)題意可設(shè)二次函數(shù)頂點(diǎn)式,再用待定系數(shù)法求解即可.

2)觀察圖形發(fā)現(xiàn)本身的面積不易表示,由條件點(diǎn)是線段中點(diǎn)想到三角形的中線將其面積分為相等的兩部分,所以將求面積最大值轉(zhuǎn)化為求 的面積最大值,方法可過(guò)軸的垂線,交于點(diǎn),通過(guò)二次函數(shù)解析式與直線的解析式分別設(shè)出點(diǎn)與點(diǎn)的坐標(biāo),再表示出的面積轉(zhuǎn)化為新的二次函數(shù)求最值;

求點(diǎn)經(jīng)過(guò)的最短路徑,先要確定點(diǎn)的位置,可作點(diǎn)關(guān)于的對(duì)稱點(diǎn),連接于一點(diǎn),該點(diǎn)即為點(diǎn)運(yùn)動(dòng)路徑最短時(shí)的點(diǎn),原因是此時(shí)共線,最后根據(jù)點(diǎn)的坐標(biāo)求出線段長(zhǎng)度即可.

因?yàn)閽佄锞與軸交于兩點(diǎn),

可設(shè)函數(shù)解析式為:,

根據(jù)題意得:

解得:

∴解析式為:;

2)∵點(diǎn)是線段中點(diǎn)

∴當(dāng)面積最大時(shí),的面積最大;

過(guò)軸的垂線,交于點(diǎn),

易得直線的直線方程為:

設(shè),

當(dāng)時(shí),有最大面積,最大面積為

,,

作點(diǎn)關(guān)于的對(duì)稱點(diǎn)

連接于一點(diǎn),該點(diǎn)即為點(diǎn)運(yùn)動(dòng)路徑最短時(shí)的點(diǎn)

因?yàn)?/span>, ,所以

根據(jù)旋轉(zhuǎn)的性質(zhì),,所以

因?yàn)?/span>關(guān)于對(duì)稱,所以

∴在中,

∴點(diǎn)運(yùn)動(dòng)最短路徑為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象經(jīng)過(guò)點(diǎn)A(1,3)、B(3,m).

(1)求反比例函數(shù)的解析式及B點(diǎn)的坐標(biāo);

(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,在8×8的網(wǎng)格中,每個(gè)小方格都是邊長(zhǎng)為1的小正方形,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).如果拋物線經(jīng)過(guò)圖中的三個(gè)格點(diǎn),那么以這三個(gè)格點(diǎn)為頂點(diǎn)的三角形稱為該拋物線的內(nèi)接格點(diǎn)三角形,設(shè)對(duì)稱軸平行于y軸的拋物線與網(wǎng)格對(duì)角線OM的兩個(gè)交點(diǎn)為AB,其頂點(diǎn)為C,如果ABC是該拋物線的內(nèi)接格點(diǎn)三角形,且AB=3,點(diǎn)AB,C的橫坐標(biāo)xA,xB,xC滿足xAxCxB,那么符合上述條件的拋物線的條數(shù)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在四邊形ABCD中,ABCD,對(duì)角線AC、BD交于點(diǎn)E,點(diǎn)F在邊AB上,連接CF交線段BE于點(diǎn)G,CG2=GEGD.

(1)求證:ACF=ABD;

(2)連接EF,求證:EFCG=EGCB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市有一段馬路需要整修,這段馬路的長(zhǎng)不超過(guò)3450米.今有甲、乙、丙三個(gè)施工隊(duì),分別施工人行道、非機(jī)動(dòng)車道和機(jī)動(dòng)車道.他們于某天零時(shí)同時(shí)開工,每天24小時(shí)連續(xù)施工.若干天后的零時(shí),甲完成任務(wù);幾天后的18時(shí),乙完成任務(wù),自乙隊(duì)完成的當(dāng)天零時(shí)起,再過(guò)幾天后的8時(shí),丙完成任務(wù),已知三個(gè)施工隊(duì)每天完成的施工任務(wù)分別為300米、240米、180米,則這段路面有 米長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,一張矩形紙片ABCD,其中AD=8cm,AB=6cm,先沿對(duì)角線BD折疊,點(diǎn)C落在點(diǎn)C′的位置,BC′AD于點(diǎn)G

   

1)求證:BG=DG

2)求C′G的長(zhǎng);

3)如圖2,再折疊一次,使點(diǎn)DA重合,折痕ENADM,求EM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,點(diǎn)PAB延長(zhǎng)線上一點(diǎn),∠BCP=∠A

1)求證:直線PC是⊙O的切線;

2)若CACP,⊙O的半徑為2,求CP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,正方形中,、分別是、邊長(zhǎng)的點(diǎn),交于點(diǎn),.求證:

2)如圖2,矩形中,,、分別是邊上的點(diǎn),交于點(diǎn),.求證:

3)如圖3,若(2)種的四邊形是平行四邊形,且,則是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知E、F、G、H是四邊形ABCD四邊的中點(diǎn),則四邊形EFGH的形狀為_____;如四邊形ABCD的對(duì)角線AC BD的和為40,則四邊形EFGH的周長(zhǎng)為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案