【題目】已知內(nèi)接于圓,點(diǎn)為弧上一點(diǎn),連接交于點(diǎn),.
(1)如圖1,求證:弧弧;
(2)如圖2,過作于點(diǎn),交圓點(diǎn),連接交于點(diǎn),且,求的度數(shù);
(3)如圖3,在(2)的條件下,圓上一點(diǎn)與點(diǎn)關(guān)于對稱,連接,交于點(diǎn),點(diǎn)為弧上一點(diǎn),交于點(diǎn),交的延長線于點(diǎn),,的周長為20,,求圓半徑.
【答案】(1)見解析;(2)∠CAG=45°;(3)r=
【解析】
(1)證∠ABD=∠ACB可得;
(2)如下圖,△AHD繞點(diǎn)A旋轉(zhuǎn)至△ALE處,使得點(diǎn)D與點(diǎn)B重合,證△ALE≌△AHE,利用勾股定理逆定理推導(dǎo)角度;
(3)如下圖,延長QR交AB于點(diǎn)T,分別過點(diǎn)N、Q作BD的垂線,交于點(diǎn)V,I,取QU=AE,過點(diǎn)U作UK垂直BD.先證△AEN≌△QUD,再證△NVE≌△RKU,可得到NV=KR=DK,進(jìn)而求得OB的長.
(1)∵∠CED是△BEC的外角,∴∠CED=∠EBC+∠BCA
∵∠ABC=∠ABD+∠EBC
又∵∠CED=∠ABC
∴∠ABD=∠ACB
∴弧AB=弧AD
(2)如下圖,△AHD繞點(diǎn)A旋轉(zhuǎn)至△ALE處,使得點(diǎn)D與點(diǎn)B重合
∵△ALB是△AHD旋轉(zhuǎn)所得
∴∠ABL=∠ADB,AL=AH
設(shè)∠CAG=a,則∠CBG=a
∵BG⊥AC
∴∠BCA=90°-a,∴∠ADB=∠ABD=90°-a
∴在△BAD中,BAE+∠HAD=180-a-(90°-a)-(90°-a)=a
∴∠LAE=∠EAH=a
∵LA=AH,AE=AE
∴△ALE≌△AHE,∴LE=EH
∵HD=LB,
∴△LBE為直角三角形
∴∠LBE=(90°-a)+(90°-a)=90°,解得:a=45°
∴∠CAG=45°
(3)如下圖,延長QR交AB于點(diǎn)T,分別過點(diǎn)N、Q作BD的垂線,交于點(diǎn)V,I,取QU=AE,過點(diǎn)U作UK垂直BD
由(2)得∠BAD=90°
∴點(diǎn)O在BD上
設(shè)∠R=n,則∠SER=∠BEC=∠MEB=90°-n
∴∠AEN=2n
∵SQ⊥AC
∴∠TAS=∠AQS=∠DQR,AN=QD
∵QU=AE
∴△AEN≌△QUD
∴∠QUD=∠AEN=2n
∴UD=UR=NE,
∵△ANE的周長為20
∴QD+QR=20
在△DQR中,QD=7
∵∠ENR=∠UDK=∠R=n
∴△NVE≌△RKU
∴NV=KR=DK=
∴BN=5
∴BD=12,OB=6
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文化用品商店準(zhǔn)備購進(jìn)甲、乙兩種書包進(jìn)行銷售,經(jīng)調(diào)查,乙書包的單價(jià)比甲書包貴元,用元購進(jìn)乙書包的個(gè)數(shù)與用元購進(jìn)甲書包的個(gè)數(shù)相等.
(1)求甲、乙兩種書包的進(jìn)價(jià)分別為多少元?
(2)商戶購進(jìn)甲、乙兩種書包共個(gè)進(jìn)行試銷,其中甲書包的個(gè)數(shù)不少于個(gè),且甲書包的個(gè)數(shù) 的倍不大于乙書包的個(gè)數(shù),已知甲書包的售價(jià)為元/個(gè),乙書包的售價(jià)為元/個(gè),且 全部售出,設(shè)購進(jìn)甲書包個(gè),求該商店銷售這批書包的利潤與之間的函數(shù)關(guān)系式,并 寫出的取值范圍;
(3)在(2)的條件下,該店將個(gè)書包全部售出后,使用所獲的利潤又購進(jìn)個(gè)書包捐贈給 貧困地區(qū)兒童,這樣該商店這批書包共獲利元.請求出該店第二次進(jìn)貨所選用的進(jìn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規(guī)定,該種玩具每件利潤不能超過60元),每天可售出50件.根據(jù)市場調(diào)查發(fā)現(xiàn),銷售單價(jià)每增加2元,每天銷售量會減少1件.設(shè)銷售單價(jià)增加元,每天售出件.
(1)請寫出與之間的函數(shù)表達(dá)式;
(2)當(dāng)為多少時(shí),超市每天銷售這種玩具可獲利潤2250元?
(3)設(shè)超市每天銷售這種玩具可獲利元,當(dāng)為多少時(shí)最大,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將二次函數(shù)y=x2+2x+1的圖象沿x軸翻折,然后向右平移1個(gè)單位,再向上平移5個(gè)單位,得到二次函數(shù)y=ax2+bx+c的圖象.函數(shù)y=x2+2x+1的圖象的頂點(diǎn)為點(diǎn)A.函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)為點(diǎn)C,兩函數(shù)圖象分別交于B、D兩點(diǎn).
(1)求函數(shù)y=ax2+bx+c的解析式;
(2)如圖2,連接AD、CD、BC、AB,判斷四邊形ABCD的形狀,并說明理由.
(3)如圖3,連接BD,點(diǎn)M是y軸上的動點(diǎn),在平面內(nèi)是否存在一點(diǎn)N,使以B、D、M、N為頂點(diǎn)的四邊形為矩形?若存在,請求出N點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在以“青春心向覺,建功新時(shí)代”為主題的校園文化藝術(shù)節(jié)期間,舉辦了合唱,群舞,書法,演講共四個(gè)項(xiàng)目的比賽,要求每位學(xué)生必須參加且僅參加一項(xiàng),小紅隨機(jī)調(diào)查了部分學(xué)生的報(bào)名情況,并繪制了下列兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)統(tǒng)計(jì)圖中信息解答下列問題:
(1)本次調(diào)查的學(xué)生總?cè)藬?shù)是多少?扇形統(tǒng)計(jì)圖中“”部分的圓心角度數(shù)是多少?
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若全校共有1800名學(xué)生,請估計(jì)該校報(bào)名參加書法和演講比賽的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景點(diǎn)試開放期間,團(tuán)隊(duì)收費(fèi)方案如下:不超過30人時(shí),人均收費(fèi)120元;超過30人且不超過m(30<m≤100)人時(shí),每增加1人,人均收費(fèi)降低1元;超過m人時(shí),人均收費(fèi)都按照m人時(shí)的標(biāo)準(zhǔn).設(shè)景點(diǎn)接待有x名游客的某團(tuán)隊(duì),收取總費(fèi)用為y元.
(1)求y關(guān)于x的函數(shù)表達(dá)式;
(2)景點(diǎn)工作人員發(fā)現(xiàn):當(dāng)接待某團(tuán)隊(duì)人數(shù)超過一定數(shù)量時(shí),會出現(xiàn)隨著人數(shù)的增加收取的總費(fèi)用反而減少這一現(xiàn)象.為了讓收取的總費(fèi)用隨著團(tuán)隊(duì)中人數(shù)的增加而增加,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=26,P是AB上(不與點(diǎn)A、B重合)的任一點(diǎn),點(diǎn)C、D為⊙O上的兩點(diǎn),若∠APD=∠BPC,則稱∠CPD為直徑AB的“回旋角”.
(1)若∠BPC=∠DPC=60°,則∠CPD是直徑AB的“回旋角”嗎?并說明理由;
(2)若的長為π,求“回旋角”∠CPD的度數(shù);
(3)若直徑AB的“回旋角”為120°,且△PCD的周長為24+13,直接寫出AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與軸交于點(diǎn)A(-2.0),與反比例函數(shù)y=(m≠0)的圖象交于點(diǎn)B(2,n),連接BO,若S△AOB=4.
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式:
(2)若直線AB與y軸的交點(diǎn)為C.求△OCB的面積
(3)根據(jù)圖象,直接寫出當(dāng)x>0時(shí),不等式>kx+b的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com