【題目】如圖所示,將二次函數(shù)y=x2+2x+1的圖象沿x軸翻折,然后向右平移1個(gè)單位,再向上平移5個(gè)單位,得到二次函數(shù)y=ax2+bx+c的圖象.函數(shù)y=x2+2x+1的圖象的頂點(diǎn)為點(diǎn)A.函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)為點(diǎn)C,兩函數(shù)圖象分別交于B、D兩點(diǎn).
(1)求函數(shù)y=ax2+bx+c的解析式;
(2)如圖2,連接AD、CD、BC、AB,判斷四邊形ABCD的形狀,并說明理由.
(3)如圖3,連接BD,點(diǎn)M是y軸上的動(dòng)點(diǎn),在平面內(nèi)是否存在一點(diǎn)N,使以B、D、M、N為頂點(diǎn)的四邊形為矩形?若存在,請(qǐng)求出N點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)y=﹣x2+5;(2)四邊形ABCD是平行四邊形,理由見解析;(3)存在,點(diǎn)N坐標(biāo)為(,)或(,)或(3,2)或(﹣3,2).
【解析】
(1)由軸對(duì)稱和平移的性質(zhì)可求解;
(2)分別求出點(diǎn)A,點(diǎn)B,點(diǎn)C,點(diǎn)D坐標(biāo),由兩點(diǎn)距離公式可求AB,CD,AD,BC,AC,BD的長(zhǎng),由兩組對(duì)邊相等的四邊形是平行四邊形可證四邊形ABCD是平行四邊形;
(3)分兩種情況討論,利用矩形的性質(zhì),可求解.
(1)∵y=x2+2x+1=(x+1)2,且將二次函數(shù)y=x2+2x+1的圖象沿x軸翻折,然后向右平移1個(gè)單位,再向上平移5個(gè)單位,
∴y=﹣(x+1﹣1)2+5=﹣x2+5;
(2)四邊形ABCD是平行四邊形,理由如下:
∵y=﹣x2+5的頂點(diǎn)為點(diǎn)C,
∴點(diǎn)C的坐標(biāo)為(0,5).
∵函數(shù)y=x2+2x+1的圖象的頂點(diǎn)為點(diǎn)A,
∴點(diǎn)A(﹣1,0),
聯(lián)立方程組可得:,
∴ 或 ,
∴點(diǎn)D的坐標(biāo)為(﹣2,1),點(diǎn)B的坐標(biāo)為(1,4).
∵點(diǎn)D(﹣2,1),點(diǎn)B(1,4),點(diǎn)A(﹣1,0),點(diǎn)C(0,5),
∴,
同理可求得:CD=,AD=,BC=,AC=,BD=3,
∴AB=CD,AD=BC,
∴四邊形ABCD是平行四邊形;
(3)存在,
設(shè)點(diǎn)N(x,y)
若BD為矩形的邊,四邊形BDMN是矩形時(shí).
∵點(diǎn)D的坐標(biāo)為(﹣2,1),點(diǎn)B的坐標(biāo)為(1,4),
設(shè)直線BD解析式為:,
∴,
解得:,
∴直線BD解析式為:y=x+3,
∵DM⊥BD,
∴設(shè)直線DM的解析式為,
將點(diǎn)D的坐標(biāo)為(﹣2,1)代入得:,
解得:,
∴直線DM的解析式為y=﹣x﹣1,
∴點(diǎn)M的坐標(biāo)為(0,﹣1).
∵BM與DN互相平分,
∴,,
∴x=3,y=2,
∴點(diǎn)N的坐標(biāo)為(3,2);
若BD為矩形的邊,四邊形BDNM是矩形時(shí).
∵點(diǎn)D的坐標(biāo)為(﹣2,1),點(diǎn)B的坐標(biāo)為(1,4),直線BD解析式為:y=x+3,
∵BM⊥BD,
∴設(shè)直線BM的解析式為,
將點(diǎn)B的坐標(biāo)為(1,4)代入得:,
解得:,
∴直線BM的解析式為y=﹣x+5,
∴點(diǎn)M的坐標(biāo)為(0,5).
∵BN與DM互相平分,
∴,,
∴x=﹣3,y=2,
∴點(diǎn)N的坐標(biāo)為(﹣3,2);
若BD為對(duì)角線.
∵點(diǎn)D、B、N的坐標(biāo)分別為(﹣2,1), (1,4), (x,y),
點(diǎn)M的橫坐標(biāo)為0,設(shè)點(diǎn)M的縱坐標(biāo)為,
∵BD與MN互相平分,
∴,,
∴,,
點(diǎn)N的坐標(biāo)為(,),點(diǎn)M的坐標(biāo)為(0,5﹣y),
∵BD=MN,
∴
整理得:
解得:,
∴點(diǎn)N的坐標(biāo)為(,)或(,),
綜上所述:點(diǎn)N坐標(biāo)為(,)或(,)或(3,2)或(﹣3,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校對(duì)交通法則的了解情況在全校隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為四種:.非常了解,.比較了解,.基本了解,.不太了解,并將此次調(diào)查結(jié)果整理繪制成下面不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
(1)本次共調(diào)查_______名學(xué)生;扇形統(tǒng)計(jì)圖中所對(duì)應(yīng)扇形的圓心角度數(shù)是_______;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)學(xué)校準(zhǔn)備從甲、乙、丙、丁四位學(xué)生中隨機(jī)抽取兩名學(xué)生參加市區(qū)交通法規(guī)競(jìng)賽,請(qǐng)用列表或畫樹狀圖的方法求甲和乙兩名學(xué)生同時(shí)被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級(jí)10個(gè)班的300名學(xué)生即將參加學(xué)校舉行的研究旅行活動(dòng),學(xué)校提出以下4個(gè)活動(dòng)主題:A.赤水丹霞地貌考察;B.平塘天文知識(shí)考察;C.山關(guān)紅色文化考察;D.海龍電土司文化考察,為了解學(xué)生喜歡的活動(dòng)主題,學(xué)生會(huì)開展了一次調(diào)查研究,請(qǐng)將下面的過程補(bǔ)全
(1)收集數(shù)據(jù):學(xué)生會(huì)計(jì)劃調(diào)查學(xué)生喜歡的活動(dòng)主題情況,下面抽樣調(diào)查的對(duì)象選擇合理的是______.(填序號(hào))
①選擇七年級(jí)3班、4班、5班學(xué)生作為調(diào)查對(duì)象
②選擇學(xué)校旅游攝影社團(tuán)的學(xué)生作為調(diào)查對(duì)象
③選擇各班學(xué)號(hào)為6的倍數(shù)的學(xué)生作為調(diào)查對(duì)象
(2)整理、描述數(shù)據(jù):通過調(diào)査后,學(xué)生會(huì)同學(xué)繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)把統(tǒng)計(jì)圖補(bǔ)充完整
某校七年級(jí)學(xué)生喜歡的活動(dòng)主題條形統(tǒng)計(jì)圖某校七年級(jí)學(xué)生喜歡的活動(dòng)主題扇形統(tǒng)計(jì)圖
(3)分析數(shù)據(jù)、推斷結(jié)論:請(qǐng)你根據(jù)上述調(diào)查結(jié)果向?qū)W校推薦本次活動(dòng)的主題,你的推薦是______(填A-D的字母代號(hào)),估算全年級(jí)大約有多少名學(xué)生喜歡這個(gè)主題活動(dòng)
(4)若在5名學(xué)生會(huì)干部(3男2女)中,隨機(jī)選取2名同學(xué)擔(dān)任活動(dòng)的組長(zhǎng)和副組長(zhǎng),求抽出的兩名同學(xué)恰好是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)經(jīng)過點(diǎn);
(1)求反比例函數(shù)的解析式;
(2)點(diǎn)在軸的正半軸上,點(diǎn)在軸的正半軸上,直線經(jīng)過點(diǎn),直線交反比例函數(shù)圖象于另一點(diǎn),若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(-5,0),以OA為半徑作半圓,點(diǎn)C是第一象限內(nèi)圓周上一動(dòng)點(diǎn),連結(jié)AC、BC,并延長(zhǎng)BC至點(diǎn)D,使CD=BC,過點(diǎn)D作x軸垂線,分別交x軸、直線AC于點(diǎn)E、F,點(diǎn)E為垂足,連結(jié)OF.
(1)當(dāng)∠BAC=30時(shí),求△ABC的面積;
(2)當(dāng)DE=8時(shí),求線段EF的長(zhǎng);
(3)在點(diǎn)C運(yùn)動(dòng)過程中,是否存在以點(diǎn)E、O、F為頂點(diǎn)的三角形與△ABC相似,若存在,請(qǐng)求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,,,點(diǎn)為邊上的動(dòng)點(diǎn)(點(diǎn)不與點(diǎn),重合).以為頂點(diǎn)作,射線交邊于點(diǎn),過點(diǎn)作交射線于點(diǎn),連接.
(1)求證:;
(2)當(dāng)時(shí)(如圖2),求的長(zhǎng);
(3)點(diǎn)在邊上運(yùn)動(dòng)的過程中,是否存在某個(gè)位置,使得?若存在,求出此時(shí)的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知內(nèi)接于圓,點(diǎn)為弧上一點(diǎn),連接交于點(diǎn),.
(1)如圖1,求證:弧弧;
(2)如圖2,過作于點(diǎn),交圓點(diǎn),連接交于點(diǎn),且,求的度數(shù);
(3)如圖3,在(2)的條件下,圓上一點(diǎn)與點(diǎn)關(guān)于對(duì)稱,連接,交于點(diǎn),點(diǎn)為弧上一點(diǎn),交于點(diǎn),交的延長(zhǎng)線于點(diǎn),,的周長(zhǎng)為20,,求圓半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC內(nèi)接于⊙O,直徑AD交BC于點(diǎn)E,延長(zhǎng)AD至點(diǎn)F,使DF=2OD,連接FC并延長(zhǎng)交過點(diǎn)A的切線于點(diǎn)G,且滿足AG∥BC,連接OC,若cos∠BAC=,BC=8.
(1)求證:CF是⊙O的切線;
(2)求⊙O的半徑OC;
(3)如圖2,⊙O的弦AH經(jīng)過半徑OC的中點(diǎn)F,連結(jié)BH交弦CD于點(diǎn)M,連結(jié)FM,試求出FM的長(zhǎng)和△AOF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形的邊在軸上,點(diǎn)的坐標(biāo)為,點(diǎn)是對(duì)角線上的一個(gè)動(dòng)點(diǎn),點(diǎn)在軸上,當(dāng)最短時(shí),點(diǎn)的坐標(biāo)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com