【題目】如圖,已知菱形的邊軸上,點的坐標為,點是對角線上的一個動點,點軸上,當最短時,點的坐標為______.

【答案】,.

【解析】

如圖,連接ACAD,分別交OBG、P,作BKOAK.首先說明點P就是所求的點,再求出點B坐標,求出直線OB、DA,列方程組即可解決問題.

如圖連接AC,AD,分別交OBGP,作BKOAK

RtOBK中,OB===4,

∵四邊形OABC是菱形,

ACOBGC=AG,OG=BG=2

OA=AB=x,

RtABK中,

AB2=AK2+BK2,

x2=8-x2+42,

x=5,

A50),

A、C關于直線OB對稱,

PC+PD=PA+PD=DA,

∴此時PC+PD最短,

∵直線OB解析式為y=x,直線AD解析式為y=-x+2

解得,

∴點P坐標(),

故答案為:(.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,將二次函數(shù)y=x2+2x+1的圖象沿x軸翻折,然后向右平移1個單位,再向上平移5個單位,得到二次函數(shù)y=ax2+bx+c的圖象.函數(shù)y=x2+2x+1的圖象的頂點為點A.函數(shù)y=ax2+bx+c的圖象的頂點為點C,兩函數(shù)圖象分別交于B、D兩點.

1)求函數(shù)y=ax2+bx+c的解析式;

2)如圖2,連接AD、CD、BC、AB,判斷四邊形ABCD的形狀,并說明理由.

3)如圖3,連接BD,點My軸上的動點,在平面內(nèi)是否存在一點N,使以B、DM、N為頂點的四邊形為矩形?若存在,請求出N點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O的直徑AB26,PAB(不與點A、B重合)的任一點,點C、DO上的兩點,若∠APD=∠BPC,則稱∠CPD為直徑AB的“回旋角”.

(1)若∠BPC=∠DPC60°,則∠CPD是直徑AB的“回旋角”嗎?并說明理由;

(2)的長為π,求“回旋角”∠CPD的度數(shù);

(3)若直徑AB的“回旋角”為120°,且△PCD的周長為24+13,直接寫出AP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】6.26國際禁毒日到來之際,重慶市教委為了普及禁毒知識,提高禁毒意識,舉辦了關愛生命,拒絕毒品的知識競賽.某校初一、初二年級分別有300人,現(xiàn)從中各隨機抽取20名同學的測試成績進行調(diào)查分析,成績?nèi)缦拢?/span>

1)根據(jù)上述數(shù)據(jù),將下列表格補充完成.

(整理、描述數(shù)據(jù)):

分數(shù)段

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

初一人數(shù)

2

_______

_______

12

初二人數(shù)

2

2

1

15

(分析數(shù)據(jù)):樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、滿分率如表:

年級

平均數(shù)

中位數(shù)

滿分率

初一

93

________

初二

________

(得出結論):

2)估計該校初一、初二年級學生在本次測試成績中可以得到滿分的人數(shù)共______人;

3)你認為哪個年級掌握禁毒知識的總體水平較好,請從兩個方面說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明對函數(shù)的圖象和性質進行了探究.已知當自變量的值為時,函數(shù)值都為;當自變量的值為時,函數(shù)值都為.探究過程如下,請補充完整.

1)這個函數(shù)的表達式為 ;

2)在給出的平面直角坐標系中,畫出這個函數(shù)的圖象并寫出這個函數(shù)的--條性質:

3)進一步探究函數(shù)圖象并解決問題:

①直線與函數(shù)有三個交點,則 ;

②已知函數(shù)的圖象如圖所示,結合你所畫的函數(shù)圖象,寫出不等式的解集:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明對九(1)、九(2)班(人數(shù)都為50人)參加“陽光體育”的情況進行了調(diào)查,統(tǒng)計結果如圖所示.下列說法中正確的是( )

A.喜歡乒乓球的人數(shù)(1)班比(2)班多B.喜歡足球的人數(shù)(1)班比(2)班多

C.喜歡羽毛球的人數(shù)(1)班比(2)班多D.喜歡籃球的人數(shù)(2)班比(1)班多

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y=kx+b(k0)與軸交于點A(-2.0),與反比例函數(shù)y=(m0)的圖象交于點B(2,n),連接BO,若SAOB=4.

(1)求反比例函數(shù)和一次函數(shù)的表達式:

(2)若直線AB與y軸的交點為C.求△OCB的面積

(3)根據(jù)圖象,直接寫出當x>0時,不等式>kx+b的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,,軸的正半軸,,分別與雙曲線,相交于點和點,且,若,則點的橫坐標為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級(1)班所有學生參加2010年初中畢業(yè)生升學體育測試,根據(jù)測試評分標準,將他們的成績進行統(tǒng)計后分為A、B、CD四等,并繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(未完成),請結合圖中所給信息解答下列問題:

九年級(1)班參加體育測試的學生有_________人;

將條形統(tǒng)計圖補充完整;

在扇形統(tǒng)計圖中,等級B部分所占的百分比是___,等級C對應的圓心角的度數(shù)為___°;

若該校九年級學生共有850人參加體育測試,估計達到A級和B級的學生共有___人.

查看答案和解析>>

同步練習冊答案