【題目】計(jì)算:

(1)0.36+(-7.4)+0.3+(-0.6)+0.64;(2)3+(-2)+5+(-8);

(3)(-103)+(+1)+(-97)+(+100)+(-1);

(4)(-2)+(-0.38)+(-)+(+0.38);

(5)(-9)+15+(-3)+(-22.5)+(-15);

(6)[(+)+(-3.5)+(-6)]+[(+2.5)+(+6)+(+)].

【答案】(1)-6.7;(2)-2;(3)-99(4)-3;(5)-35;(6)0

【解析】

根據(jù)有理數(shù)的加法運(yùn)算律進(jìn)行運(yùn)算即可.

解:(1)原式=(0.36+0.3+0.64)+[(-7.4)+(-0.6)].

=1.3-8=-6.7;

(2)3+(-2)+5+(-8).

=3+5.

=9+(-11).

=-2;

(3)原式=[(-103)+(-97)]++100.

=-200++100=-99;

(4)(-2)+(-0.38)+(-)+(+0.38).

+[(-0.38)+(+0.38)].

=-3+0.

=-3;

(5)原式=[(-9)+(-15)]+[15+(-3)]+(-22.5).

=[(-9)+(-15)+(-)+(-)]+[15+(-3)++(-)]+(-22.5).

=-25+12.5+(-22.5).

=-25+[12.5+(-22.5)].

=-25+(-10)=-35;

(6)+[(+2.5)+(+6)+(+)].

=(+)+(-3.5)+(-6)+(+2.5)+(+6)+(+).

+[-3.5+(+2.5)]+[(-6)+(+6)].

=1+(-1)+0.

=0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于C(0,﹣3).
(1)求拋物線的解析式;
(2)D是y軸正半軸上的點(diǎn),OD=3,在線段BD上任取一點(diǎn)E(不與B,D重合),經(jīng)過A,B,E三點(diǎn)的圓交直線BC于點(diǎn)F,
①試說明EF是圓的直徑;
②判斷△AEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有理數(shù)x,y在數(shù)軸上對應(yīng)點(diǎn)如圖所示:

1)在數(shù)軸上表示﹣x|y|;

2)試把x,y,0,﹣x|y|這五個(gè)數(shù)從小到大用“<”號連接,

3)化簡:|x+y||yx|+|y|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平行四邊形ABCD中,連接BD,AD=6cm,BD=8cm,∠DBC=90°,現(xiàn)將△AEF沿BD的方向勻速平移,速度為2cm/s,同時(shí),點(diǎn)G從點(diǎn)D出發(fā),沿DC的方向勻速移動(dòng),速度為2cm/s.當(dāng)△AEF停止移動(dòng)時(shí),點(diǎn)G也停止運(yùn)動(dòng),連接AD,AG,EG,過點(diǎn)E作EH⊥CD于點(diǎn)H,如圖2所示,設(shè)△AEF的移動(dòng)時(shí)間為t(s)(0<t<4).
(1)當(dāng)t=1時(shí),求EH的長度;
(2)若EG⊥AG,求證:EG2=AEHG;
(3)設(shè)△AGD的面積為y(cm2),當(dāng)t為何值時(shí),y可取得最大值,并求y的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB=100°,COD=40°,OE平分∠AOC,OF平分∠BOD.(本題中的角均為大于且小于等于180°的角).

(1)如圖1,當(dāng)OB、OC重合時(shí),求∠EOF的度數(shù);

(2)當(dāng)∠COD從圖1所示位置繞點(diǎn)O順時(shí)針旋轉(zhuǎn)n°(0<n<90)時(shí),∠AOE﹣BOF的值是否為定值?若是定值,求出∠AOE﹣BOF的值;若不是,請說明理由.

(3)當(dāng)∠COD從圖1所示位置繞點(diǎn)O順時(shí)針旋轉(zhuǎn)n°(0<n<180)時(shí),滿足∠AOD+EOF=6COD,則n=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時(shí)出發(fā),勻速行駛.設(shè)行駛的時(shí)間為x(時(shí)),兩車之間的距離為y(千米),圖中的折線表示從兩車出發(fā)至快車到達(dá)乙地過程中yx之間的函數(shù)關(guān)系.根據(jù)圖中信息

1)求線段AB所在直線的函數(shù)解析式;

2可求得甲乙兩地之間的距離為 千米;

3)已知兩車相遇時(shí)快車走了180千米,則快車從甲地到達(dá)乙地所需時(shí)間為 小時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過點(diǎn)A作⊙O的切線交OC的延長線于點(diǎn)D,交BC的延長線于點(diǎn)E.
(1)求證:∠DAC=∠DCE;
(2)若AB=2,sin∠D= , 求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(1,a),點(diǎn)B的坐標(biāo)為(b,1),點(diǎn)C的坐標(biāo)為(c,0),其中a、b滿足(a+b﹣8)2+|a﹣b+2|=0.

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)當(dāng)ABC的面積為6時(shí),求點(diǎn)C的坐標(biāo);

(3)當(dāng)4≤SABC10時(shí),求點(diǎn)C的橫坐標(biāo)c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,D為AC上一點(diǎn),DE⊥AB于點(diǎn)E,AC=12,BC=5.
(1)求cos∠ADE的值;
(2)當(dāng)DE=DC時(shí),求AD的長.

查看答案和解析>>

同步練習(xí)冊答案