【題目】據(jù)報道,從2018年8月以來“非洲豬瘟”給生豬養(yǎng)殖戶帶來了不可估量的損失,某養(yǎng)殖戶為了預(yù)防“非洲豬瘟”的侵襲,每天對豬場進行藥熏消毒,已知一瓶藥物釋放過程中,一個圈舍內(nèi)每立方米空氣中含藥量y(毫克)與時間x(分鐘)之間滿足正比例函數(shù)關(guān)系;藥物釋放完后,y與x之間滿足反比例函數(shù)關(guān)系,如圖所示,結(jié)合圖中提供的信息解答下列問題.
(1)分別求當(dāng)和時,y與x之間滿足的函數(shù)關(guān)系式;
(2)據(jù)測定,當(dāng)空氣中每立方米的含藥量不低于6毫克時,消毒才有效,那么這次熏藥的有效消毒時間是多少分鐘?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在△ABC中,AB>AC,點D,E分別在邊AB,AC上,且DE∥BC,若AD=2,AE=,則的值是 ;
(2)如圖2,在(1)的條件下,將△ADE繞點A逆時針方向旋轉(zhuǎn)一定的角度,連接CE和BD,的值變化嗎?若變化,請說明理由;若不變化,請求出不變的值;
(3)如圖3,在四邊形ABCD中,AC⊥BC于點C,∠BAC=∠ADC=θ,且tanθ=,當(dāng)CD=6,AD=3時,請直接寫出線段BD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線.
(1)若該拋物線與直線交于A,B兩點,點B在y軸上.求該拋物線的表達式及點A的坐標(biāo);
(2)橫坐標(biāo)為整數(shù)的點稱為橫整點.
①將(1)中的拋物線在A,B兩點之間的部分記作(不含A,B兩點),直接寫出上的橫整點的坐標(biāo);
②拋物線與直線交于C,D兩點,將拋物線在C,D兩點之間的部分記作(不含C,D兩點),若上恰有兩個橫整點,結(jié)合函數(shù)的圖象,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點,A點在原點的左側(cè),B點的坐標(biāo)為(3,0),與y軸交于C(0,﹣3)點,點P是直線BC下方的拋物線上一動點.
(1)求這個二次函數(shù)的表達式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點P,使四邊形POP′C為菱形?若存在,請求出此時點P的坐標(biāo);若不存在,請說明理由.
(3)當(dāng)點P運動到什么位置時,四邊形ABPC的面積最大?求出此時P點的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB經(jīng)過⊙O上的點C,并且OA=OB,CA=CB,⊙O交直線OB于E,D,連接EC,CD.
(1)求證:直線AB是⊙O的切線;
(2)試猜想BC,BD,BE三者之間的等量關(guān)系,并加以證明;
(3)若tan∠CED=,⊙O的半徑為3,求OA的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E,F在對角線BD上,,迎接AF,CE.
(1)求證:;
(2)試判斷四邊形AECF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸交于點B,與y軸交于點A,直線AB與反比例函數(shù)y=(m>0)在第一象限的圖象交于點C、點D,其中點C的坐標(biāo)為(1,8),點D的坐標(biāo)為(4,n).
(1)分別求m、n的值;
(2)連接OD,求△ADO的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市郊外景區(qū)內(nèi)一條筆直的公路a經(jīng)過三個景點A、B、C,景區(qū)管委會又開發(fā)了風(fēng)景優(yōu)美的景點D,經(jīng)測量景點D位于景點A的北偏東30°方向8km處,位于景點B的正北方向,還位于景點C的北偏西75°方向上,已知AB=5km.
(1)景區(qū)管委會準(zhǔn)備由景點D向公路a修建一條距離最短的公路,不考慮其它因素,求出這條公路的長;(結(jié)果精確到0.1km)
(2)求景點C與景點D之間的距離.(結(jié)果精確到1km)
(參考數(shù)據(jù): =1.73, =2.24,sin53°=cos37°=0.80,sin37°=cos53°=0.60,tan53°=1.33,tan37°=0.75,sin38°=cos52°=0.62,sin52°=cos38°=0.79,tan38°=0.78,tan52°=1.28,sin75°=0.97,cos75°=0.26,tan75°=3.73.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD中,AB=8,AD=6, 點E是邊CD上一個動點,連接AE,將△AED沿直線AE翻折得△AEF.
(1) 當(dāng)點C落在射線AF上時,求DE的長;
(2)以F為圓心,FB長為半徑作圓F,當(dāng)AD與圓F相切時,求cos∠FAB的值;
(3)若P為AB邊上一點,當(dāng)邊CD上有且僅有一點Q滿∠BQP=45°,直接寫出線段BP長的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com