【題目】在⊙O中,AB為直徑,點(diǎn)PAB的延長(zhǎng)線上,PC與⊙O相切于點(diǎn)C,點(diǎn)D為弧AC上的點(diǎn),且2DAB﹣∠P90°,連接AD

1)如圖1,求證:弧AD=弧BC;

2)如圖2PC6,PB,求∠ADC度數(shù);

3)如圖3,在(2)的條件下,FAB下方⊙O上一點(diǎn).∠ACF60°,LOF中點(diǎn),LKALL,交CF于點(diǎn)K.連接AK,求AK的長(zhǎng).

【答案】1)見解析;(2)∠ADC120°;(3AK2

【解析】

1)如圖1中,連接ODOC.想辦法證明∠AOD=∠COB即可.

2)利用相似三角形的性質(zhì)求出PA,再證明∠COB60°即可解決問題.

3)如圖3中,作LHABH,設(shè)KLAPNCFABM.首先證明ACF是等邊三角形,解直角三角形求出OH,HL,HN,利用相似三角形的性質(zhì)求出KM,再利用勾股定理即可解決問題.

1)證明:如圖1中,連接OD,OC

PC是⊙O的切線,

OCPC

∴∠PCO90°,

∴∠P+POC90°,

OAOD,

∴∠DAB=∠ADO,

2DAB﹣∠P90°

180°﹣∠AOD﹣(90°﹣∠POC)=90°

∴∠AOD=∠POC,

∴弧AD=弧BC

2)解:如圖2中,連接OCBC

AB是直徑,PC是切線,

∴∠ACB=∠PCB,

OAOC,

∴∠OAC=∠OCA,

∴∠PCB=∠PAC,

∵∠P=∠P

∴△PCB∽△PAC,

,

PC2PBPA,

PA,

ABPAPB4,

OCOBOA2,

tanCOB ,

∴∠COB60°,

OCOB,

∴△OBC是等邊三角形,

∴∠ABC60°,

∴∠ADC180°﹣∠ABC120°

3)解:如圖3中,作LHABH,設(shè)KLAPNCFABM

∵∠AFC180°﹣∠ADC60°,∠ACF60°,

∴△ACF是等邊三角形,

由(1)可知,ACAFCF6,∠CAP30°,

∵∠CAF60°,

∴∠CAN=∠FAN30°

ANCF,

CNNF AC3,

OLLF

RtOHL中,∠OHL90°,∠HOL60°

OHOL ,HL

LHFN,OLLF

OHHM,

AMACcos30°3HLFM,

ALLK

∴∠AHL=∠ALN90°,

∵∠LAH=∠LAN,

∴△AHL∽△ALN,

,

HNANAHNMHMHN,

HLKM,

,

MK1,

AK

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若矩形的一個(gè)短邊與長(zhǎng)邊的比值為,(黃金分割數(shù)),我們把這樣的矩形叫做黃金矩形

(1)操作:請(qǐng)你在如圖所示的黃金矩形ABCD(AB>AD)中,以短邊AD為一邊作正方形AEFD.

(2)探究:在(1)中的四邊形EBCF是不是黃金矩形?若是,請(qǐng)予以證明;若不是,請(qǐng)說明理由.

(3)歸納:通過上述操作及探究,請(qǐng)概括出具體有一般性的結(jié)論(不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(  )

A. 一個(gè)游戲的中獎(jiǎng)概率是,則做10次這樣的游戲一定會(huì)中獎(jiǎng)

B. 為了解全國(guó)中學(xué)生的心理健康情況,應(yīng)該采用普查的方式

C. 一組數(shù)據(jù)6,8,7,8,8,9,10的眾數(shù)和中位數(shù)都是8

D. 若甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)、

1)求拋物線的解析式;

2)若與拋物線的對(duì)稱軸交于點(diǎn),以為圓心,長(zhǎng)為半徑作圓,軸的位置關(guān)系如何?請(qǐng)說明理由.

3)過點(diǎn)的切線,交軸于點(diǎn),請(qǐng)求出直線的解析式及點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,tanACB,將其沿對(duì)角線AC剪開得到△ABC和△ADE(點(diǎn)C與點(diǎn)E重合),將△ADE繞點(diǎn)A旋轉(zhuǎn),當(dāng)線段ADAB在同一條直線上時(shí),連接EC,則∠ECB的正切值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的解析式是

1)用配方法將化成的形式,并寫出該二次函數(shù)的對(duì)稱軸和頂點(diǎn)坐標(biāo);

2)二次函數(shù)的圖象與x軸相交嗎?說明理由;若相交,求出交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了有效地落實(shí)國(guó)家精準(zhǔn)扶貧政策,切實(shí)關(guān)愛貧困家庭學(xué)生.某校對(duì)全校各班貧困家庭學(xué)生的人數(shù)情況進(jìn)行了調(diào)查.發(fā)現(xiàn)每個(gè)班級(jí)都有貧困家庭學(xué)生,經(jīng)統(tǒng)計(jì)班上貧困家庭學(xué)生人數(shù)分別有1名、2名、3名、5名,共四種情況,并將其制成了如下兩幅不完整的統(tǒng)計(jì)圖:

(1)填空:a = b= ;

(2)求這所學(xué)校平均每班貧困學(xué)生人數(shù);

(3)某愛心人士決定從2名貧困家庭學(xué)生的這些班級(jí)中,任選兩名進(jìn)行幫扶,請(qǐng)用列表或畫樹狀圖的方法,求出被選中的兩名學(xué)生來自同一班級(jí)的概率.

貧困學(xué)生人數(shù)

班級(jí)數(shù)

1

5

2

2

3

a

5

1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從﹣2,﹣0,4中任取一個(gè)數(shù)記為m,再?gòu)挠嘞碌娜齻(gè)數(shù)中,任取一個(gè)數(shù)記為n,若kmn

1)請(qǐng)用列表或畫樹狀圖的方法表示取出數(shù)字的所有結(jié)果;

2)求正比例函數(shù)ykx的圖象經(jīng)過第一、三象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,AD8,點(diǎn)E、點(diǎn)F分別在邊AD,BC上,且EFAD,點(diǎn)B關(guān)于EF的對(duì)稱點(diǎn)為G點(diǎn),連接EG,若EG與以CD為直徑的⊙O恰好相切于點(diǎn)M,則AE的長(zhǎng)度為(

A.3B.C.6+D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案