【題目】若矩形的一個短邊與長邊的比值為,(黃金分割數(shù)),我們把這樣的矩形叫做黃金矩形

(1)操作:請你在如圖所示的黃金矩形ABCD(AB>AD)中,以短邊AD為一邊作正方形AEFD.

(2)探究:在(1)中的四邊形EBCF是不是黃金矩形?若是,請予以證明;若不是,請說明理由.

(3)歸納:通過上述操作及探究,請概括出具體有一般性的結(jié)論(不需證明)

【答案】(1)見解析;(2)矩形EBCF不是黃金矩形,理由見解析;(3)若以黃金矩形的短邊為邊在矩形內(nèi)作(截割)正方形,則剩余矩形必為黃金矩形.

【解析】

(1)如圖,分兩種情況:正方形中,AD的對邊在矩形的內(nèi)部或外部;

(2)矩形EBCF不是黃金矩形, 設(shè)AB=a,AD=b(a>b),則BE=BA+AE=a+b,BE′=BA-E′A=a-b,由已知得=,所以==÷(1+)=÷(1+)=,對應(yīng)邊不成比例,故矩形EBCF不是黃金矩形;矩形E′BCF′是黃金矩形,

理由:==(1-)÷=(1-)÷=,即對應(yīng)邊成比例,故兩個矩形相似.

(3)由(1)、(2)可發(fā)現(xiàn)結(jié)論:若以黃金矩形的短邊為邊在矩形內(nèi)作(截割)正方形,則剩余矩形必為黃金矩形.

解:(1)以AD為邊可作出兩個正方形AEFD與AE′F′D′(AB>AD),如圖所示

(2)矩形EBCF不是黃金矩形,理由如下:

設(shè)AB=a,AD=b(a>b),則BE=BA+AE=a+b,BE′=BA-E′A=a-b,

由ABCD為黃金矩形,得=

==÷(1+)=÷(1+)=

∴矩形EBCF不是黃金矩形;

矩形E′BCF′是黃金矩形.

證明:如圖,∵==(1-)÷=(1-)÷=

∴E′BCF′是黃金矩形

(3)由(1)、(2)可發(fā)現(xiàn)結(jié)論:若以黃金矩形的短邊為邊在矩形內(nèi)作(截割)正方形,則剩余矩形必為黃金矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,AB=AC,∠ABC =DBC邊上一點,以AD為邊作,使AE=AD,+=180°

1)直接寫出∠ADE的度數(shù)(用含的式子表示);

2)以AB,AE為邊作平行四邊形ABFE,

如圖2,若點F恰好落在DE上,求證:BD=CD;

如圖3,若點F恰好落在BC上,求證:BD=CF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB是⊙O的直徑,點C在⊙O上,且∠CAB=30°,設(shè)點D是線段AC上任意一點(不含端點),連接OD,當(dāng)CD+OD的最小值為9時,則⊙O的直徑AB的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小林在沒有量角器和圓規(guī)的情況下,利用刻度尺和一副三角板畫出了一個角的平分線,他的做法是這樣的:如圖,

①利用刻度尺在∠AOB的兩邊OA,OB上分別取OM=ON;

②利用兩個三角板,分別過點M,NOMON的垂線,交點為P;

③畫射線OP.則射線OP為∠AOB的平分線.

(1)請寫出射線OP為∠AOB的平分線的證明過程.

(2)請根據(jù)你的證明過程,寫出小林的畫法的依據(jù)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,有不重合的兩個點Qx1,y1)與Px2y2).若Q,P為某個直角三角形的兩個銳角頂點,且該直角三角形的直角邊均與x軸或y軸平行(或重合),則我們將該直角三角形的兩條直角邊的邊長之和稱為點Q與點P之間的“折距”,記做DPQ.特別地,當(dāng)PQ與某條坐標軸平行(或重合)時,線段PQ的長即點Q與點P之間的“折距”.例如,在圖1中,點P1,-1),點Q3,-2),此時點Q與點P之間的“折距”DPQ=3

1)①已知O為坐標原點,點A3,-2),B(-1,0),則DAO=______,DBO=______.

②點C在直線y=-x+4上,請你求出DCO的最小值.

2)點E是以原點O為圓心,1為半徑的圓上的一個動點,點F是直線y=3x+6上以動點.請你直接寫出點E與點F之間“折距”DEF的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBCAD=BC=2ABFAD的中點,作CEAB,垂足E在線段AB上,連接EF、CF

1)若∠ADC=80°,求∠ECF;

2)求證:∠ECF=CEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長為1,與原點重合,軸的正半軸上,點軸的負半軸上將正方形繞點逆時針旋轉(zhuǎn)至正方形的位置,相交于點,的坐標為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知以E3,0)為圓心,以5為半徑的⊙Ex軸交于A,B兩點,與y軸交于C點,拋物線經(jīng)過A,BC三點,頂點為F

1)求AB,C三點的坐標;

2)求拋物線的解析式及頂點F的坐標;

3)已知M為拋物線上一動點(不與C點重合),試探究:

使得以A,B,M為頂點的三角形面積與△ABC的面積相等,求所有符合條件的點M的坐標;

若探究中的M點位于第四象限,連接M點與拋物線頂點F,試判斷直線MF⊙E的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在⊙O中,AB為直徑,點PAB的延長線上,PC與⊙O相切于點C,點D為弧AC上的點,且2DAB﹣∠P90°,連接AD

1)如圖1,求證:弧AD=弧BC;

2)如圖2PC6,PB,求∠ADC度數(shù);

3)如圖3,在(2)的條件下,FAB下方⊙O上一點.∠ACF60°,LOF中點,LKALL,交CF于點K.連接AK,求AK的長.

查看答案和解析>>

同步練習(xí)冊答案