【題目】周末秋高氣爽,陽光明媚,小趙帶爺爺?shù)綖I江路去散步. 祖孫倆在長度為600米的、路段上往返行走. 他們從地出發(fā),小趙陪爺爺走了兩圈一同回到地后,就開始勻速跑步,爺爺繼續(xù)勻速散步. 如圖反映了他們距離地的路程(米)與小趙跑步的時間(分鐘)的部分關系圖(他們各自到達地或地后立即調頭,調頭轉身時間忽略不計). 則小趙跑步過程中祖孫倆第四次與第五次相遇地點間距為_______米.

【答案】80

【解析】

根據(jù)題意和和函數(shù)圖象可以求得祖孫倆第四次與第五次相遇地點,從而可以解答本題.

根據(jù)圖象可知:爺爺?shù)乃俣葹椋?/span>/分鐘,

在第8分鐘他們相遇了,爺爺走了.

小趙跑了,

小趙的速度為:/分鐘,

小趙跑一圈所用的時間為10分鐘,

根據(jù)待定系數(shù)法求出直線EH的解析式為:

直線CF的解析式為:

聯(lián)立方程解得:即第四次相遇的地方距離A480米,

同理:直線FG的解析式為:

聯(lián)立方程解得:即第五次相遇的地方距離A400米,

.

故答案為:80.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=x2+bx+c過點(2,-2)和(-1,10),與x軸交于A、B兩點,與y軸交于C點.

(1)求拋物線的解析式.

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y=x+的圖象與性質進行了探究.

下面是小明的探究過程,請補充完整:

(1)函數(shù)y=x+的自變量x的取值范圍是_____

(2)下表列出了yx的幾組對應值,請寫出m,n的值:m=_____,n=_____;

x

﹣3

﹣2

﹣1

1

2

3

4

y

﹣2

m

2

n

(3)如圖,在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點,根據(jù)描出的點,畫出該函數(shù)的圖象

(4)結合函數(shù)的圖象,請完成:

①當y=﹣時,x=_____

②寫出該函數(shù)的一條性質_____

③若方程x+=t有兩個不相等的實數(shù)根,則t的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù) a≠0的圖象如圖所示,

有下列結論

a、b同號;

x=1x=3,函數(shù)值相等

③4a+b=0;

-1x5,y0

其中正確的有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線的頂點為點D,并與x軸相交于AB兩點(點A在點B的左側),與y軸相交于點C

1)求點A、BC、D的坐標;

2)在y軸的正半軸上是否存在點P,使以點PO、A為頂點的三角形與△AOC相似?若存在,求出點P的坐標;若不存在,請說明理由;

3)取點E,0)和點F0),直線l經(jīng)過EF兩點,點G是線段BD的中點.

G是否在直線l上,請說明理由;

在拋物線上是否存在點M,使點M關于直線l的對稱點在x軸上?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:若關于x的一元二次方程的根均為整數(shù),稱該方程為“快樂方程”. 我們發(fā)現(xiàn)任何一個“快樂方程”的判別式一定為完全平方數(shù). 規(guī)定為該“快樂方程”的“快樂數(shù)”. 若有另一個“快樂方程”的“快樂數(shù)”為且滿足,則稱互為“樂呵數(shù)”. 例如:“快樂方程”的兩根均為整數(shù),其判別式,其“快樂數(shù)”

(1)“快樂方程”的“快樂數(shù)”為 ,若關于x的一元二次方程m為整數(shù),且5<m<22)是“快樂方程”,求其“快樂數(shù)”;

(2)若關于x的一元二次方程m、n均為整數(shù))都是“快樂方程”,且其“快樂數(shù)”互為“樂呵數(shù)”,求n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AC是矩形ABCD的對角線,AC的垂直平分線EF分別交BC、AD于點E和F,EF交AC于點O.

(1)求證:四邊形AECF是菱形;

(2)若AC=8,EF=6,求菱形的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AB=6,AD=9,BAD的平分線交BC于點E,交DC的延長線于點F,BGAE,垂足為G,BG=,則CEF的周長為( 。

A. 8 B. 9.5 C. 10 D. 11.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BC是路邊坡角為30°,長為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DADB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°60°(圖中的點A、B、C、D、M、N均在同一平面內(nèi),CMAN).

(1)求燈桿CD的高度;

(2)求AB的長度(結果精確到0.1米).(參考數(shù)據(jù):=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

同步練習冊答案